生物可降解载药微球经巩膜向眼内给药的研究
周诗宇, 韩寅, 孟永春, 程凌云
325027 温州医科大学眼视光学院 眼科药物研究所
通信作者:程凌云,Email:lingyunc@hotmail.com
摘要

由于眼部复杂的生理结构和诸多屏障,使得全身给药后药物到达眼后段的量有限,疗效甚微。眼局部药物使用方便,但药物难以传递到视网膜。玻璃体内给药侵袭性大,危险性高。经巩膜给药有诸多优势,如巩膜表面积大,且位置表浅、操作简单,也不引起眼内屏障的损害。但要求药物在巩膜表面有适当的浓度,这个浓度过高会导致大量药物进入全身系统,引起全身不良反应;如果药物在巩膜表面浓度太低,通过巩膜进入脉络膜和视网膜所需的药物浓度梯度就难以建立。所以绝大部分药物溶液不适合经巩膜给药。为了满足巩膜表面合适药物浓度的要求,科研工作者尝试研发并使用生物材料药物微球或巩膜表面给药装置进行经巩膜给药。相比于巩膜表面给药装置,微球不需要手术植入,简单注射即可,使用较为方便。

关键词: 结膜下注射; 眼球筋膜下注射; 药物微球; 经巩膜给药; 药物控释系统
Biodegradable Microspheres for Transscleral Drug Delivery
Shiyu Zhou, Yin Han, Yongchun Meng, Lingyun Cheng
Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China
Corresponding author: Lingyun Cheng, Institute of Ocular Pharmacology, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China (Email: lingyunc@hotmail.com)
Abstract

Due to the complex of eye physiology and multiple anatomical barriers, systemically delivered drugs often cannot maintain a sustained drug level in posterior retina and vitreous. Though eye drop is convenient for patients, therapeutics that reaches retina or vitreous is very limited after topical administration. Intravitreal injection is invasive and prone to complications such as lens damage, vitreous bleeding, retinal detachment, and infection. In contrast to these routes of delivery, transscleral drug delivery has advantages such as large surface area, easy access and administration, and better safety profile without breach of the globe integrity. The challenge for transscleral delivery is that the therapeutics delivered onto the episclera needs to have an adequate concentration. If the episcleral concentration is too high, large portion of the delivered drug will be absorbed into systemic circulation and may cause systemic side effects. On the other hand, low episcleral drug concentration cannot build an effective concentration gradient for drug crossing the sclera and reaching choroid and retina. Therefore, many therapeutic compounds are not suited for transscleral delivery. In order to satisfy the proper episcleral concentration, scientists have been modulating the drug dissolution by microspheres or fabricating episcleral devices. Compared with episcleral implant or devices, episcleral microspheres do not need surgical procedure. The microspheres can be administrated by a simple needle injection.

Keyword: subconjunctival injection; sub-tenon injection; drug microspheres; transscleral drug delivery; controlled drug release system

眼睛按其解剖结构可分为眼前段和眼后段两部分, 眼前段包括角膜、前房、虹膜、晶状体和睫状体; 眼后段包括玻璃体、视网膜和脉络膜。在致盲和致残性眼内疾病中, 绝大部分是视网膜和脉络膜的眼后段疾病, 如糖尿病视网膜病变(Diabetic retinopathy, DR)、年龄相关性黄斑变性(AMD)、脉络膜新生血管(Choroidal neovascularization, CNV)。然而, 由于眼睛特殊的生理结构, 如血眼屏障、血液-房水屏障、血液-视网膜屏障以及眼睛的高度敏感性, 使得眼后段疾病的治疗十分困难。滴眼液或凝胶类眼药的使用, 对角膜炎、虹膜睫状体炎等眼前段疾病有较好的疗效[1, 2, 3]。但对眼后段疾病, 局部点药难以到达疾病部位[3, 4, 5, 6]。玻璃体内注射对眼球侵袭性大[7, 8], 局部较高浓度的药物对视网膜也容易造成局部视网膜损伤[9], 并且注射有一定难度, 不适当操作容易损伤晶状体, 并引起白内障、眼内炎等并发症[7, 8, 10, 11, 12, 13]。全身给药, 由于存在血眼屏障, 经全身循环到达眼后段组织的药物比结膜下注射给药还少, 难以达到持续有效的药物浓度[14, 15]。为有效治疗眼后段疾病, 研究人员对经巩膜给药的研究日趋广泛和深入。巩膜面积占眼球总表面积的85%[16], 为药物的置放提供了很好的场所。目前资料显示许多药物, 包括大分子药物都对巩膜有相当大的通透性[17, 18, 19]。因此, 经巩膜给药最近被认为有很好的开发前景, 比较适合用于眼后段给药。动物和人眼的临床研究也证明结膜下或筋膜下注射的药物可在眼内达到治疗浓度[20, 21]。本文主要对采用载药微球实行经巩膜向眼内给药的实验和临床研究进行综述。

1 经巩膜给药

经巩膜给药是指将药物置放在巩膜表面或巩膜附近, 药物透过巩膜扩散到眼内的给药方式。但研究证明只有药物与巩膜在接触的情况下才最易透过巩膜进入眼内[22]。相反, 不与巩膜接触的给药方式如球侧或球后给药, 使得药物容易被吸收进入全身[23]。严格地讲, 把药物注射到巩膜表面才是真正的经巩膜给药, 如临床使用的球结膜下注射和球筋膜下注射。

结膜下注射药物治疗眼内疾病已有很长的历史[24, 25, 26, 27, 28, 29]。如地塞米松结膜下注射是常用的治疗前葡萄膜炎的方法之一。但是, 结膜血管丰富, 结膜下注射药物易被吸收进入全身; 结膜下注射的药物易透见, 影响眼球外观; 结膜较薄, 注射的药物有时也可侵蚀结膜形成结膜溃疡及坏死[30, 31, 32]。为了避免这些缺点, 眼球筋膜下注射日趋广泛。筋膜是一层极软的结缔组织, 从角膜缘后6~7 mm开始完整包裹后部眼球。筋膜缺乏丰富的血液循环, 所以药物注射后不会扩散到全身, 球筋膜和巩膜之间的空间是理想的给药场所。

2 载药微球经巩膜给药的必要性

药物溶解度直接影响经巩膜给药的效率和在眼内的持续时间[33]。如果药物溶解度过大, 药物被大量吸收入全身血液循环, 经巩膜进入玻璃体内的药物明显减少[34, 35]; 相反, 如果药物溶解度很小, 溶解出的游离药物在局部浓度太低, 在进入眼内之前可能已被眼球表面的血液和淋巴循环所清除[36]。例如, 他克莫司(FK506)难溶于水, 将其配制为混悬液使用时, 当其浓度过大时药物颗粒会堵塞注射针头; 当其浓度过小时, 药物又难以进入眼内。为此, 有研究人员将生物可降解材料与药物结合制成微球, 可改善药物的溶出速度, 用于结膜下或筋膜下向眼内递药。

3 生物可降解载药微球经巩膜给药
3.1 生物可降解载药微球的理化性质

生物可降解性高分子载药微球具有良好的生物相容性、生物降解性、理化及生物稳定性、极低的毒性, 以及较高载药量。根据使用目的不同, 确定药物及生物可降解高分子后, 可选用不同的微球制备方法, 得到性能符合要求的微球[37]。针对经巩膜给药, 生物可降解载药微球的理化性质具体有以下几点:①微球的平均粒径控制在2~5 μ m, 以便能顺利通过27G或更小针头, 进行结膜或筋膜下注射; ②微球作为药物的储存库, 控制药物的释放速率, 根据疾病需要可在几周或几个月的时间窗口内提供有效药物浓度, 减少给药次数; ③微球对包载的药物有保护作用, 可减少在恶劣生物环境下药物的降解(比如pH急剧变化), 提高药物的生物利用度; ④与直接用药相比较, 微球对药物释出的调控使药物的体内半衰期明显延长, 药物在靶组织中的浓度波动减少, 最小所需治疗浓度明显下降, 浓度-时间曲线下面积明显增加, 也降低了药物自身对眼组织的不良反应; ⑤通过微球制备工艺的控制, 很多治疗效果好但难溶于水的药物可通过微球的形式在眼球局部给药。微球制备过程中有机溶剂的选用可改变药物的结晶度, 从而提高难溶性药物在体内的溶解度; ⑥微球制作的高分子生物材料可在体内降解, 降解产物可以被生物系统清除。

3.2 早期的生物可降解载药微球经巩膜给药

早在1992年Kimura等[13]对微球已有研究, 在球后结膜下注射抗新陈代谢剂阿霉素(Adriamycin, ADR)-聚乳酸(Polylacticacid, PLA)微球控制青光眼过滤术后纤维化瘢痕形成。研究中按载药微球剂量分为100 μ g组和200 μ g组, 随机选择兔一侧眼为实验组(载药微球), 对侧眼为对照组(空白微球), 双眼对照, 术后定期测量眼内压(IOP)和裂隙灯显微镜观察滤过情况, 并对术后各时间点进行病理学分析。制备的微球进行体外释放, 结果表明ADR-PLA微球体外持续释放20 d无突释现象; 兔的实验眼IOP都明显低于对照眼, 实验眼的术后滤泡存在较长时间。注药部位早期有异体反应, 之后慢慢消失, 预示微球经巩膜给药有发展空间。

1993年, Giordano等[12]对实验性兔眼增生性玻璃体视网膜病变(Proliferative vitreoretinopathy, PVR)进行视黄酸(Retinoicacid, RA)生物可降解聚合物微球的效用研究。结果显示, 制备的微球均匀、形状圆形、表面光滑、平均直径约有60 μ m, 放在水中21 d后, 部分微球降解。体外释放曲线平缓, 没有突释现象, 40 d后微球中82.8%的RA释放出来。载药微球注射入玻璃体腔, 2个月后用间接眼底镜观察发现73%兔眼的微球仍清晰可见, 但有轻度炎症反应。然而, 其中1只兔眼, 少量载药微球在注射针抽回时流到结膜下, 但结膜下没有发现炎症反应, 且1周后裂隙灯显微镜下已观察不到这部分微球的存在。这提示巩膜表面注射药物要比玻璃体内安全, 同时说明微球在巩膜表面降解要更快。

环孢霉素A(Cyclosporine A, CsA)是有效抑制异体移植反应的免疫抑制剂, 局部点眼时会引起眼部灼伤感和急性角膜上皮炎。但是, 其水溶性低、混悬液不易通过注射针头, 很难经巩膜给药来治疗眼后段疾病。20世纪末, de Rojas Silva等[38]利用溶剂蒸发法制备载有CsA的聚乳酸-羟基乙酸共聚物(PLGA)微球经结膜下给药后, 研究其对兔角膜异体移植产生的排斥反应的疗效。分别在角膜移植兔的右眼结膜下注入环孢霉素溶液(Solution of CsA, CsA-AR)和环孢霉素-PLGA微球混悬液(Microspheres suspension of CsA, CsA-MP), 注射的药物浓度均为15 mg/ml, 注射量0.2 ml。注射5周后, 实验结果显示微球组的角膜存活时间明显长于另一组。光学显微镜检查发现注射部位均有炎症反应, 结膜固有层中有结缔组织包裹微球的现象。

这些早期的药物微球经巩膜给药研究常发现注射部位有炎症或异物反应, 这可能和微球制作过程中有机溶剂的残留或材料的选用有关。比如, 如果微球中PLGA含量较大时, 降解过程中产生乳酸可导致局部充血, 如果微球过小可诱发巨噬细胞吞噬, 导致局部pH明显下降, 可引起炎症和刺激症状[39]

3.3 生物可降解载药微球经巩膜给药的发展

2008年, Cui等[40]制备了5-氟尿嘧啶-PLA微球, 对青光眼过滤手术成功的兔眼经结膜进行注射, 观察微球的持续治疗效果。结果显示制备的微球有良好的生物相容性, 并且对于青光眼过滤术后的兔眼有一定的疗效。由于制备工艺的改进和包载药物的存在, 结膜或筋膜下注射后机体对微球的异物和炎症反应已呈现明显减少的趋势, 预示以后临床使用提供安全性。Kompella等[11]将糖皮质激素布地奈德(Budesonide)和PLA制成Budesonide-PLA纳米球或微米球经结膜下注射到Sprague-Dawley(SD)鼠眼内, 研究Budesonide-PLA微球或纳米球经鼠眼巩膜的药代动力学。过程中发现在100 pmol到10 μ mol的浓度范围内, Budesonide没有细胞毒性, 并且浓度依赖性抑制人视网膜色素上皮(ARPE-19)细胞信使RNA 的表达和血管内皮生长因子(Vascular endothelial growth factor, VEGF)的分泌。Budesonide-PLA纳米粒(345 nm)和微球(3.6 μ m)的包封率分别是65%和99%。纳米球结膜下注射后, SD鼠视网膜中在14 d时已测不到药物, 但微球注射眼的视网膜中在14 d时仍然可检测到药物, 说明载药微球在微米大小比纳米大小停留在巩膜表面时间更长, 更适合经巩膜给药。

随后, Ayalasomayajula和Kompella[41]又将塞内昔布(Celecoxib)和PLGA制成微球, 在链脲霉素诱导糖尿病的SD鼠眼结膜下给药检测视网膜中Celecoxib浓度并评估糖尿病的氧化应激反应是否缓解, 对糖尿病视网膜病变的治疗进行前期实验。成功制备的Celecoxib-PLGA大小是(3.9± 0.6)μ m, 包封率是68.5%。微球体外释放持续7周时, (30.4± 3)%的Celecoxib从微球中释放。结膜下注射后7 d和14 d时, 玻璃体、视网膜、晶状体和角膜内的药物比对照组明显高。结膜下注射Celecoxib-PLGA的SD鼠眼内硫代巴比妥酸活性产物和四羟壬烯醛明显被抑制, 这些均说明可降解聚合物包裹难溶性药物能够持续释放药物, 维持眼组织内药物水平, 并对糖尿病视网膜氧化病变的抑制有积极作用。

巩膜不仅对小分子药物有良好的通透性, 对某些大分子药物如多肽和蛋白质也可通过。PKC412是一种酪氨酸激酶抑制剂, 能抑制蛋白激酶C亚型和VEGF及血小板源性生长因子(Platelet derived growth factor, PDGF), 从而可以阻止眼内新生血管形成, 进而可以治疗CNV。2003年, Saishin等[42]在猪眼上构建CNV模型, 用制备的PKC412-PLGA微球在结膜下给药治疗CNV, 并研究了局部持续释放PKC412微球及其对CNV的治疗效果。结果发现载药微球组的猪眼视网膜下新生血管比空白微球组的要少。20 d时载药微球组在脉络膜、玻璃体、视网膜均可检测到药物。虽然注射微球会引起轻微的结膜凸起, 但都没有明显的炎症反应发生。研究结果表明在猪眼CNV模型中眼结膜/筋膜下注射PKC412微球对CNV有抑制作用。2003年, Carrasquillo等[43]成功制备了EYE001-PLGA微球, 并进行透巩膜离体实验。EYE001是一个实验合成的大分子RNA适体, 运用溶剂蒸发法将其与PLGA制成EYE001-PLGA微球。在人脐带静脉内皮细胞中通过检测RNA适体抑制VEGF诱导细胞增殖来观察它的释放特性。分别在释放的短期、中期和长期收集适体来观察释放的药物的稳定性和生物活性。结果显示PLGA微球能够持续释放EYE001达20 d之久, 平均每日约释放2 μ g, 而且之后适体依然能保持其活性。为了研究这种聚合物微球作为一种潜在的经巩膜给药的可行性, Carrasquillo等设计了一种体外装置来评价微球经兔巩膜及之后聚合物的水化和降解过程。将微球放置到设计好的兔巩膜离体装置上6 d后, 通过扫描电镜可以发现微球开始水化和降解。分光光度法测定也可以得知适体可以通过巩膜进行传递。以上研究证明生物可降解载药微球能持续释放药物并且透过巩膜传递药物直达眼后段。

研究发现经巩膜给药效果和药物微球的大小也有明显关系。曲安奈德(Triamcinolone acetonide, TA)是一个天然的疏水小分子药物, 其混悬液可治疗多种眼球后段疾病, 如糖尿病性黄斑水肿、视网膜静脉堵塞的黄斑水肿以及AMD[44, 45, 46]。本研究发现, 筋膜下注射TA混悬液可在视网膜内提供治疗浓度的TA约45 d。如果将TA做成微球, 筋膜下注射TA微球后提供的眼内有效浓度时间要远大于45 d才有意义。Kadam等[47]对TA纳米粒和(或)微球经结膜下给药的动物体内传递情况及其对CNV疾病的影响进行了研究。他们利用PLA为载药材料, 以不感光亲脂的尼罗红为着色染料, 通过水包油乳剂蒸发方法制备微球和纳米颗粒。TA-PLA纳米粒和微球粒径分别是551、2 090 nm; 载药量分别是14.7%、29.5%; 包封率分别为44.1%、88.5%; 表面均是多孔的圆球形。体外释放结果是纳米粒持续45 d, 突释6.31%, 微球持续120 d, 突释4.97%。诱导CNV造模14 d后, 将制备的TA-PLA微球和纳米粒分别经结膜下注射Brown Norway(BN)鼠右眼, 2个月后麻醉处死, 摘取眼球及其周围组织并分离出眼球的巩膜、视网膜、脉络膜-RPE、玻璃体、虹膜-睫状体、晶状体和角膜以及周围组织, 质谱检测各组织中TA浓度, 发现2个月后摘取的右眼眼球组织在扫描电子显微镜下观察到结膜下仍有大量微球残余, 且形态仍是球形, 但2个月后纳米粒组和其无药组中BN鼠眼各组织中均检测不到TA。微球组的药物持续释放超过2个月。酶联免疫试剂盒检测CNV模型眼中的VEGF量, 结果显示半数抑制浓度(IC50)是(0.07± 0.01)μ mol, 抑制率为33%。说明微球比纳米粒更适用于眼后段的用药, 且在较长时间段里可以达到有效治疗浓度。Amrite和Kompella[48]对结膜下注射生物微球后其大小和滞留时间长短做了研究, 发现结膜下注射一定量20 nm的微球可以很快从注射部位被清除, 而同量的200 nm和2 μ m的微球可在注射部位存留达2个月之久。可生物降解聚合物制备的微球或纳米粒即使颗粒大小超过200 nm, 在释放药物的同时微球颗粒渐渐变小, 最终也会在结膜下被清除, 并且几乎没有炎症反应。但是, 结膜下注射2个月后, 微球在眼各组织中其含量均很低。进一步的离体和体内研究发现, 眼周血循环和淋巴系统对20 nm微粒清除影响很大。安乐死后的动物眼内药物水平比活体明显要高, 说明眼球的动态生理学屏障对经巩膜给药影响很大[49]。我们认为, IOP、眼球周血循环和淋巴循环、巩膜厚度和结构、脉络膜循环及视网膜色素上皮药物泵等这些因素对经巩膜给药均有较大影响。研究和确定这些因素的作用方向和影响程度是设计合理和有效的经巩膜给予药物微球和装置的科学基础。有研究发现[50], 注射到巩膜表面的药物如果不进行剂型改良, 约70%的药物会通过结膜/巩膜血管或淋巴管进入全身循环, 即使透过巩膜的药物在经过脉络膜时也会被脉络膜血液循环带走。

4 展望

结膜下注射尤其是Tenon囊下注射的应用很广泛, 尤其是对于眼后段疾病的治疗, 其效率比局部点眼高, 安全性比玻璃体内注射高。目前Tenon囊下还主要限于单纯药物的注射, 不能满足长效缓释的临床要求。即使是像TA这样的药物, 混悬液Tenon囊下注射后, 眼内的药物动力学仍然是典型的一级动力学, 表现为早期药物浓度过高, 浪费了注射的药物, 甚至还有可能引起毒性; 早期过后, 药物浓度很快降低, 导致治疗作用窗口缩小, 不能达到长效缓释的目的[20, 21, 51]。近期, 程凌云教授团队进行了一系列TA眼局部使用的研究, 先后报道了将TA做成微药膜贴敷眼球巩膜表面的研究, 这种方法可将TA在视网膜内的有效治疗浓度的时间从45 d延长到90~120 d, TA在眼内的药物代谢动力学从典型的一级药代动力学转化为长效缓释系统[20, 21, 51, 52, 53, 54]。这是迄今为止巩膜表面给药后, 药物在视网膜内持续时间最长的科学报道。但是, 巩膜表面药物膜需要切开结膜放到巩膜表面, 创伤大, 不适合反复给药要求。相比之下, 微球可反复注射给药, 使用范围更广泛。微球经巩膜给药时, 可能引起轻微的异物反应, 但有研究报道几周之后就会消失[13], 巩膜表面给药装置如药膜也有类似报道[55, 56], 但有的药膜可以不引起任何异物反应或炎症[54]。目前, 药物微球或药膜还未曾用于人眼, 其批量生产和消毒还有待完善, 目前多采用γ 射线进行消毒。另外, 生物材料的组合优化有待进一步研究, 尽量使药物突释效应降到最低, 以提高眼部运用的安全性。

作者贡献声明 周诗宇:收集数据, 撰写论文和修改文章。韩寅:收集数据, 撰写论文和前期修正。孟永春:修改论文。程凌云:构建和设计文章的思路, 修改和定稿

The authors have declared that no competing interests exist.

参考文献
[1] Malhotra S, Khare A, Grover K, et al. Design and Evaluation of Voriconazole Eye Drops for the Treatment of Fungal Keratitis. J Pharm (Cairo), 2014, 2014: 490595. DOI: 10.1155/2014/490595. [本文引用:1]
[2] Glogowski S, Lowe E, Sioumermet R, et al. Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of lotemax gel, 0. 5%. J Ocul Pharmacol Ther, 2014, 30(1): 66-73. DOI: 10.1089/jop.2013.0142. [本文引用:1]
[3] Kaufman HE, Haw WH. Ganciclovir ophthalmic gel 0. 15%: safety and efficacy of a new treatment for herpes simplex keratitis. Curr Eye Res, 2012, 37(7): 654-660. DOI: 10.3109/02713683.2012.692846. [本文引用:2]
[4] Lin J, Sun J, Wang Y, et al. Ocular Pharmacokinetics of Naringenin Eye Drops Following Topical Administration to Rabbits. J Ocul Pharmacol Ther, 2015, 31(1): 51-56. DOI: 10.1089/jop.2014.0047. [本文引用:1]
[5] Boddu SH, Gupta H, Patel S. Drug delivery to the back of the eye following topical administration: an update on research and patenting activity. Recent Pat Drug Deliv Formul, 2014, 8(1): 27-36. DOI: 10.2174/1872211308666140130093301. [本文引用:1]
[6] Chen Q, Zheng Y, Li Y, et al. The effect of deacetylated gellan gum on aesculin distribution in the posterior segment of the eye after topical administration. Drug Deliv, 2012, 19(4): 194-201. DOI: 10.3109/10717544.2012.690003. [本文引用:1]
[7] Campbell RJ, Gill SS, Bronskill SE, et al. Adverse events with intravitreal injection of vascular endothelial growth factor inhibitors: nested case-control study. BMJ, 2012, 37(9): 723-733. DOI: 10.1136/bmj.e4203. [本文引用:2]
[8] Goldberg RA, Flynn HW Jr, Isom RF, et al. An outbreak of streptococcus endophthalmitis after intravitreal injection of bevacizumab. Am J Ophthalmol, 2012, 153(2): 204-208. DOI: 10.1016/j.ajo.2011.11.035. [本文引用:2]
[9] Cheng L, Hostetler KY, Lee J, et al. Characterization of a novel intraocular drug delivery system using crystalline lipid antiviral prodrugs of ganciclovir and cyclic cidofovir. Invest Ophthalmol Vis Sci, 2004, 45(11): 4138-4144. DOI: 10.1167/iovs.04-0064. [本文引用:1]
[10] Cheung CS, Wong AW, Lui A, et al. Incidence of endophthalmitis and use of antibiotic prophylaxis after intravitreal injections. Ophthalmology, 2012, 119(8): 1609-1614. DOI: 10.1016/j.ophtha.2012.02.014. [本文引用:1]
[11] Kompella UB, Band i N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci, 2003, 44(3): 1192-1201. DOI: 10.1167/iovs.02-0791. [本文引用:2]
[12] Giordano GG, Refojo MF, Arroyo MH. Sustained delivery of retinoic acid from microspheres of biodegradable polymer in PVR. Invest Ophthalmol Vis Sci, 1993, 34(9): 2743-2751. [本文引用:2]
[13] Kimura H, Ogura Y, Moritera T, et al. Injectable microspheres with controlled drug release for glaucoma filtering surgery. Invest Ophthalmol Vis Sci, 1992, 33(12): 3436-3441. [本文引用:3]
[14] del Pozo-Rodríguez A, Delgado D, Gascón AR, et al. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther, 2013, 29(2): 173-188. DOI: 10.1089/jop.2012.0128. [本文引用:1]
[15] Hayden BC, Jockovich ME, Murray TG, et al. Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci, 2004, 45(10): 3644-3649. DOI: 10.1167/iovs.04-0228. [本文引用:1]
[16] Olsen TW, Aaberg SY, Geroski DH, et al. Human sclera: thickness and surface area. Am J Ophthalmol, 1998, 125(2): 237-241. DOI: 10.1016/s0002-9394(99)80096-8. [本文引用:1]
[17] Tratta E, Pescina S, Padula C, et al. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery. Eur J Pharm Biopharm, 2014, 88(1): 116-122. DOI: 10.1016/j.ejpb.2014.04.018. [本文引用:1]
[18] Huang D, Wang L, Dong Y, et al. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur J Pharm Biopharm, 2014, 88(1): 104-115. DOI: 10.1016/j.ejpb.2014.04.011. [本文引用:1]
[19] Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci, 2000, 41(5): 1181-1185. [本文引用:1]
[20] Shen L, You Y, Sun S, et al. Intraocular and systemic pharmacokinetics of triamcinolone acetonide after a single 40-mg posterior subtenon application. Ophthalmology, 2010, 117(12): 2365-2371. DOI: 10.1016/j.ophtha.2010.03.033. [本文引用:3]
[21] Nan K, Sun S, Li Y, et al. Characterisation of systemic and ocular drug level of triamcinolone acetonide following a single sub-Tenon injection. Br J Ophthalmol, 2010, 94(5): 654-658. DOI: 10.1136/bjo.2009.172106. [本文引用:3]
[22] Silva PS, Singh RJ, Bakri SJ, et al. Vitreous concentration of triamcinolone acetonide after a single transseptal depot injection. Ocul Immunol Inflamm, 2009, 17(3): 216-220. DOI: 10.1080/09273940802687838. [本文引用:1]
[23] Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv, 2004, 1(1): 99-114. DOI: 10.1517/17425247.1.1.99. [本文引用:1]
[24] Yoshida J, Wicks RT, Zambrano AI, et al. Inhibition of corneal neovascularization by subconjunctival injection of fc-endostatin, a novel inhibitor of angiogenesis. J Ophthalmol, 2015, 2015: 137136. DOI: 10.1155/2015/137136. [本文引用:1]
[25] El Zaoui I, Touchard E, Berdugo M, et al. Subconjunctival Injection of XG-102, a c-Jun N-Terminal Kinase Inhibitor Peptide, in the Treatment of Endotoxin-Induced Uveitis in Rats. J Ocul Pharmacol Ther, 2014, 31(1): 17-24. DOI: 10.1089/jop.2014.0019. [本文引用:1]
[26] Wu ZH, Feng CX, Tian J, et al. Study on the inhibitory effect of avastin by subconjunctival injection on corneal neovascularization and its mechanisms. International Eye Science, 2013, 13: 52-55. [本文引用:1]
[27] Chong RS, Su DH, Tsai A, et al. Patient acceptance and attitude toward an alternative method of subconjunctival injection for the medical treatment of glaucoma. J Glaucoma, 2013, 22(3): 190-194. DOI: 10.1097/ijg.0b013e318237c6c4. [本文引用:1]
[28] Albini TA, Zamir E, Read RW, et al. Evaluation of Subconjunctival Triamcinolone for Nonnecrotizing Anterior Scleritis. Ophthalmology, 2005, 112(10): 1814-1820. DOI: 10.1016/j.ophtha.2005.05.008. [本文引用:1]
[29] Stein R, Romano A, Treister G, et al. Effect of subconjunctival injection of hyaluronidase on outflow resistance in normal and in open-angle glaucomatous patients. Metab Pediatr Syst Ophthalmol, 1982, 6(3-4): 169-174. [本文引用:1]
[30] Chong YJ, Wong CK, Ismail S. Conjunctival necrosis following a subconjunctival injection of triamcinolone acetonide in a child. Middle East Afr J Ophthalmol, 2015, 22(1): 125-128. DOI: 10.4103/0974-9233.148364. [本文引用:1]
[31] Güngor IU, Beden U, Erkan D. Conjunctival necrosis due to subconjunctival injection of betamethasone in treatment of graft rejection after penetrating keratoplasty. Ophthalmic Surg Lasers Imaging, 2005, 36(4): 348-349. [本文引用:1]
[32] Zamir E, Pe'er J. Necrotizing conjunctival ulceration following subconjunctival depot methylprednisolone injection. Ophthalmic Surg Lasers, 1999, 30(7): 565-566. [本文引用:1]
[33] Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos, 2011, 39(5): 771-781. DOI: 10.1124/dmd.110.037408. [本文引用:1]
[34] Resende AP, São Braz B, Delgado E. Ocular Erythropoietin Penetration after Subconjunctival Administration in Glaucomatous Rats. Ophthalmic Res, 2016, 56(2): 104-110. DOI: 10.1159/000444327. [本文引用:1]
[35] Lin D, Yang YZ, Duan YQ, et al. Pharmacokinetic study of vitreous and aqueous humors concentrations of demethylvancomycin after subconjunctival injection and posterior sub-tenon's continuous infusion with a micro pump in vivo. Invest Ophthalmol Vis Sci, 2016, 57(12): 6414-6414. [本文引用:1]
[36] Kim ES, Durairaj C, Kadam RS, et al. Human Scleral Diffusion of Anticancer Drugs from Solution and Nanoparticle Formulation. Pharm Res, 2009, 26(5): 1155-1161. DOI: 10.1007/s11095-009-9835-0. [本文引用:1]
[37] Andhariya JV, Burgess DJ. Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv, 2016, 13(4): 593-608. DOI: 10.1517/17425247.2016.1134484. [本文引用:1]
[38] de Rojas Silva MV, Rodríguez-Ares MT, Sánchez-Salorio M, et al. Efficacy of subconjunctival cyclosporin-containing microspheres on keratoplasty rejection in the rabbit. Graefes Arch Clin Exp Ophthalmol, 1999, 237(10): 840-847. DOI: 10.1007/s004170050321. [本文引用:1]
[39] Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997, 28(1): 5-24. DOI: 10.1016/j.addr.2012.09.004. [本文引用:1]
[40] Cui LJ, Sun NX, Li XH, et al. Subconjunctival sustained release 5-fluorouracil for glaucoma filtration surgery. Acta Pharmacol Sin, 2008, 29(9): 1021-1028. DOI: 10.1111/j.1745-7254.2008.00833.x. [本文引用:1]
[41] Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol, 2005, 511(2-3): 191-198. DOI: 10.1016/j.ejphar.2005.02.019. [本文引用:1]
[42] Saishin Y, Silva RL, Saishin Y, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci, 2003, 44(11): 4989-4993. DOI: 10.1167/iovs.03-0600. [本文引用:1]
[43] Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci, 2003, 44(1): 290-299. DOI: 10.1167/iovs.01-1156. [本文引用:1]
[44] Cellini M, Pazzaglia A, Zamparini E, et al. Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema. BMC Ophthalmol, 2008, 8: 5. DOI: 10.1186/1471-2415-8-5. [本文引用:1]
[45] Lam DS, Chan CK, Mohamed S, et al. A prospective rand omised trial of different doses of intravitreal triamcinolone for diabetic macular oedema. Br J Ophthalmol, 2007, 91(2): 199-203. DOI: 10.1136/bjo.2006.102848. [本文引用:1]
[46] Jonas JB, Spand au UH, Kamppeter BA, et al. Duration of the effect of intravitreal triamcinolone acetonide in eyes with exudative age-related macular degeneration. J Ocul Pharmacol Ther, 2006, 22(3): 194-199. DOI: 10.1089/jop.2006.22.194. [本文引用:1]
[47] Kadam RS, Tyagi P, Edelhauser HF, et al. Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide. Int J Pharm, 2012, 434(1): 140-147. DOI: 10.1016/j.ijpharm.2012.05.025. [本文引用:1]
[48] Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol, 2005, 57(12): 1555-1563. DOI: 10.1211/jpp.57.12.0005. [本文引用:1]
[49] Amrite AC, Edelhauser HF, Singh SR, et al. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis, 2008, 14: 150-160. [本文引用:1]
[50] Gu B, Li X, Liu j, et al. Determination of the effect size of conjunctival and episcleral circulation on transscleral drug delivery. IOVS, 2016: abstract#3456. [本文引用:1]
[51] Liu X, Li Y, Zhang Y, et al. Comparison of intraocular pressure elevation after anterior versus posterior subtenon triamcinolone acetonide acetate injection: a retrospective study. Reina, 2012, 32(9): 1838-1843. DOI: 10.1097/IAE.0b013e31824fd384. [本文引用:2]
[52] Sun S, Li J, Li X, et al. Episcleral drug film for better-targeted ocular drug delivery and controlled release using multilayered poly-ε-caprolactone (PCL). Acta Biomater, 2016, 37: 143-154. DOI: 10.1016/j.actbio.2016.04.014. [本文引用:1]
[53] Chen M, Li X, Liu J, et al. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release, 2015, 203: 109-117. DOI: 10.1016/j.jconrel.2015.02.021. [本文引用:1]
[54] Meng Y, Sun S, Li J, et al. Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-ε-caprolactone matrix. Acta Biomater, 2014, 10(1): 126-133. DOI: 10.1016/j.actbio.2013.09.022. [本文引用:2]
[55] Peng Y, Ang M, Foo S, et al. Biocompatibility and biodegradation studies of subconjunctival implants in rabbit eyes. PloS One, 2011, 6(7): e22507. DOI: 10.1371/journal.pone.0022507. [本文引用:1]
[56] Gilger BC, Salmon JH, Wilkie DA, et al. A novel bioerodible deep scleral lamellar cyclosporine implant for uveitis. Invest Ophthalmol Vis Sci, 2006, 47(6): 2596-2605. DOI: 10.1167/iovs.05-1540. [本文引用:1]