mGluR5对大鼠视网膜对光反应的调控
戴加满, 何军材, 李世迎, 阴正勤
400038 重庆,第三军医大学西南医院眼科
通信作者:李世迎,Email:shiying_li@126.com
摘要

目的 探索代谢型谷氨酸受体5(mGluR5)对大鼠暗适应视网膜电图(ERG)不同成分的贡献。方法 实验研究。出生后30日龄大鼠(RCS-rdy+-p+)12只,暗适应大于12 h后,分别行视网膜下腔注射mGluR5激动剂CHPG[(R,S)-2-chloro-5-hydroxyphenylglycine] 200 μmol(6只,CHPG组)和抑制剂MPEP[2-methyl-6-(phenylethynyl)-pyridine] 200 μmol(6只,MPEP组),对侧眼注射同等体积PBS作为对照。注射后2 d采用RETI-scan系统记录其系列刺激光强度下(-4.5、-2.5、-0.5、-0.02、0.5 1 logcd×m×s-2)的暗适应ERG。导出数据,采用配对 t检验进行双眼间数据比较。结果 CHPG组,a、b波幅值在不同光强下均显著降低(除最低光强)(-4.5< t<-2.3, P<0.05),进一步分析得出a、b波最大幅值(Rmax和Vmax)均明显降低(-4.5< t<-2.3, P<0.05),但其敏感度均未出现明显变化,且b/a未见明显变化。MPEP组,a、b波幅值在不同光强下均显著升高(除最低光强)(-3< t<-2, P<0.05),进一步分析得出a、b波Rmax和Vmax均明显升高(-3< t<-2, P<0.05),但其敏感度均未出现明显变化,且b/a未见明显变化。2组的振荡电位(OPs)与相应的对照眼比较未见明显差别。结论 mGluR5激动后,ERG a、b波幅值明显降低,mGluR5主要调控外层视网膜的对光反应。

关键词: mGluR5; 视网膜电图; CHPG; MPEP
Contribution of mGluR5 to different components of the rat dark-adapted electroretinogram
DAI Jiaman, HE Juncai, LI Shiying, YIN Zhengqin
Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
Corresponding author: LI Shiying, Email: shiying_li@126.com
Abstract

Objective To investigate the contribution of the metabotropic glutamate receptor 5 (mGluR5) to the different components of the rat dark-adapted electroretinogram (ERG).Methods This was an experimental study. After 12 h dark adaptation, RCS-rdy+-p+ rats were subretinally injected with the 200 μmol agonist (R, S)-2-chloro-5-hydroxyphenylglycine (CHPG) and 200 μmol antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP). The same volume of phosphate buffered saline (PBS) was injected into the fellow eye for comparison. The dark-adapted ERGs were recorded by a series of flashes [-4.5, -2.5, -0.5, -0.02, 0.5, and 1 log(cd×m/s-2)]. Output data were exported and compared by paired t-tests.Results In the CHPG group, the amplitudes of the a- and b-waves at all light intensities (except the lowest intensity) were significantly decreased compared with the PBS-injected eyes. The parameters of Rmax and Vmax were also significantly decreased, but sensitivities of the a- and b-waves, the b-wave to a-wave ratio, and the oscillatory potentials (OPs) were unchanged when compared with the PBS-injected eyes. In the MPEP group, the amplitudes of the a- and b-waves at all light intensities (except the lowest intensity) were significantly increased compared with the PBS-injected eyes. The parameters of Rmax and Vmax were also significantly increased, but the sensitivities of the a- and b-waves, the b-wave to a-wave ratio, and OPs were unchanged when compared with the PBS-injected eyes.Conclusion The mGluR5 agonist CHPG decreased the amplitudes of the ERG a- and b-waves. This suggests that mGluR5 regulates the light responses of the outer retina.

Keyword: Metabotropic glutamate receptor 5; Electroretinogram; (R, S)-2-chloro-5-hydrox- yphenylglycine; 2-methyl-6-(phenylethynyl)-pyridine

谷氨酸是视网膜内重要的兴奋性神经递质, 也是光感受器细胞释放的唯一神经递质。暗环境下光感受器细胞持续释放谷氨酸, 释放到突触间隙的谷氨酸被位于下一级神经元上的谷氨酸受体感受并进行信息传递[1, 2]。谷氨酸受体分为代谢型谷氨酸受体(Metabotropic glutamate receptors, mGluRs)和离子型谷氨酸受体(Ionotropic glutamate receptors, iGluRs), 其中mGluRs可以分为3类, Ⅰ 类包括mGluR1和mGluR5, Ⅱ 类包括mGluR2、mGluR3及mGluR7, Ⅲ 类包括mGluR4、mGluR6和mGluR8[3]。mGluRs在中枢系统中被广泛研究, 但在视网膜内, 研究仅集中在mGluR6上[4, 5, 6]。近年来, 有研究指出青光眼模型中mGluR5会被激活, 同时mGluR5能够调控内向钾电流, 并影响Kir4.1(Inward rectifying potassium channel)的表达[7, 8]。但关于mGluR5对视网膜对光反应的调控未见报道。

1 材料与方法
1.1 动物

日龄为30 d的RCS-rdy+-p+大鼠12只[由第三军医大学大坪医院野战外科研究所实验动物中心提供, 许可证号:SCXK(渝)2012-0003, 不分雌雄], 分为MPEP[2-methyl-6-(phenylethynyl)-pyridine]注射组(6只), CHPG[(R, S)-2-chloro-5-hydroxyphenylglycine]注射组(6只)。外眼和检眼镜检查屈光介质清晰, 眼底无病变。予以12 h明-暗交替光照, 不限食水, 室温18~23 ℃条件下饲养。

1.2 方法

大鼠暗适应12 h后, 在暗室随机选择一眼行视网膜下腔注射CHPG或者MPEP(4 μ l, 200 μ mol), 对侧眼注射同等体积PBS作为对照。采用RETI-scan系统视觉电生理检测仪(德国Roland 公司)记录闪光视网膜电图(ERG)。刺激器为Ganzfeld 全野刺激器。记录电极为gold-foil 环状角膜电极(德国Roland公司), 参考电极和接地电极分别为不锈钢自制针状电极, 各电极自身阻抗均小于5 KΩ 。同时记录双眼数据。于暗红光下安放电极, 记录电极分别置于双眼角膜, 以人工泪液保持角膜滋润, 参考电极分别刺入双侧颊部皮下, 接地电极置于尾部。再次暗适应10 min 后, 行ERG记录。采用6种不同刺激光强(-4.5、-2.5、-0.5、-0.02、0.5、1 logcd× m× s-2)进行刺激, 前2个光强刺激下叠加3次, 后4个光强刺激下叠加1次, 带宽为0.2~300 Hz, 刺激间隔依据刺激强度从30 s到2 min不等。振荡电位(Oscillatory potentials, OPs)的提取采用数字滤波器(60~300 Hz, 5阶)。

1.3 数据分析及统计学方法

实验研究。所有ERG数据的处理使用Matlab 7.4及Excel软件进行分析。首先导出数据用Matlab 7.4进行预处理, 提取a波; 然后将数据输出到Excel中, 根据数学模型进行拟合, a波的数学模型见式(1), 其中Rmax表示a波最大幅值(单位mV), i表示刺激光强(单位cd× s× m-2), S表示a波的敏感度(单位m2× cd-1× s-3)。

b波的数学模型见式(2), 其中Vmax表示b波的最大幅值(单位mV), I表示刺激光强(单位cd× s× m-2), A表示b波的敏感度(单位m2× cd-1× s-3)。

大鼠双眼间数据的比较采用配对样本t检验, 以P< 0.05为差异有统计学意义。

2 结果
2.1 CHPG注射后ERG的变化

视网膜下腔注射CHPG 2 d后, ERG的波形图见图1。ERG的a、b波幅值在不同刺激光强下均明显降低(最低光强除外)(-4.5< t< -2.3, P< 0.05)。

图1 RCS-rdy+-p+大鼠(正常大鼠)行CHPG玻璃体腔注射后ERG变化。A:不同刺激光强下ERG波形曲线(蓝色为PBS注射眼, 红色为CHPG注射眼); CHPG注射后a波(B)和b波(C)光强-幅值曲线(* P< 0.05; * * P< 0.01)Figure 1 ERG changes after delivery of CHPG. A: ERG waveforms induced by six different light intensities after subretinal delivery of PBS (blue) or CHPG (red). The intensity-amplitude relationship of the a- (B) and b-waves (C). ERG, electroretinogram; CHPG, (R, S)-2-chloro-5-hydroxyphenylglycine; PBS, phosphate-buffered saline; * P< 0.05; * * P< 0.01.

2.2 MPEP注射后ERG的变化

视网膜下腔注射MPEP 2 d后, ERG的波形图见图2。ERG的a、b波幅值在不同刺激光强下均明显升高(a波除最低2个光强外)(-3< t< -2, P< 0.05)。

图2 RCS-rdy+-p+大鼠(正常大鼠)行MPEP玻璃体腔注射后ERG变化。A:不同刺激光强下ERG波形曲线(蓝色为PBS注射眼, 红色为MPEP注射眼); MPEP注射后a波(B)和b波(C)光强-幅值曲线(* P< 0.05; * * P< 0.01)Figure 2 ERG changes after delivery of MPEP. A: ERG waveforms induced by six different light intensities after subretinal delivery of PBS (blue) or MPEP (red). The intensity-amplitude relationship of the a- (B) and b-waves (C). ERG, electroretinogram; MPEP, 2-methyl- 6-(phenylethynyl)-pyridine; PBS, phosphate-buffered saline; * P< 0.05; * * P< 0.01.

2.3 CHPG及MPEP注射后ERG不同成分变化

进一步分析CHPG及MPEP注射后, 其中a波的分析是先依据式(1)拟合a波最大幅值(Rmax), 再依据式(2)进行拟合得出b波最大幅值(Vmax)。相对值计算依据式(3), 其中Pnor(i)指归一化后的相对值, P(i)是指对应实际值, Pave(i)是指对应的平均值。a、b波的最大幅值、比值和敏感度的变化见图3。CHPG注射组, a、b波的最大幅值(Rmax及Vmax)和对侧眼比较均明显降低(-4.5< t< -2.3, P< 0.05)。而在MPEP注射组, a、b波的最大幅值均明显升高(-3< t< -2, P< 0.05); 但b/a及其敏感度在2组中均与其对照眼比较无明显变化。

图3 RCS-rdy+-p+大鼠(正常大鼠)玻璃体腔注射CHPG及MPEP组ERG不同成分变化。 A:CHPG注射后ERG不同成分变化; B:MPEP注射后ERG不同成分变化(* * P< 0.01)Figure 3 Different components of ERG changes after delivery of CHPG (A) and MPEP (B). PBS, phosphate-buffered saline; ERG, electroretinogram; CHPG, (R, S)-2-chloro-5-hydroxyphenylglycine; MPEP, 2-methyl-6-(phenylethynyl)-pyridine; Rmax, the maximum amplitude of a-wave; Vmax, the maximum amplitude of b-wave; logS, sensitivity of a-wave; logA, sensitivity of b-wave; * * P< 0.01.

2.4 CHPG及MPEP注射后其OPs的变化

OPs是通过软件直接从采集到的ERG波形上提取出来, OPs的幅值以其系列小波中幅值最大的一个小波幅值计算, 随着刺激光强的增加, OPs的幅值与ERG的幅值均增加。OPs的拟合与b波类似。

CHPG及MPEP组其OPs与对照眼比较均未出现明显变化。见图4

图4 RCS-rdy+-p+大鼠(正常大鼠)玻璃体腔注射CHPG及MPEP后OPs变化 A:不同刺激光强下ERG波形图及提取的OPs波形图; B:OPs光强-幅值曲线拟合示意图; C:CHPG及MPEP注射后OPs幅值变化。Figure 4 OP changes after delivery of CHPG and MPEP. A: ERG and OPs waveforms induced by six different light intensities; B: The intensity-amplitude relationship of OPs; C: Amplitude of OPs after delivery of CHPG and MPEP. ERG, electroretinogram; Ops, Oscillatory potentials; CHPG, (R, S)-2-chloro-5-hydroxyp- henylglycine; MPEP, 2-methyl-6-(phenylethynyl) pyridine.

3 讨论

ERG是光诱导视网膜产生的综合电活动[9], 因其能够客观、定量、无创地反映视网膜内各层不同神经元的功能, ERG的临床研究和应用日益广泛。ERG的a波即PIII成分, 被认为起源于视网膜的光感受器层, 反映光感受器的活性。近年来, 有研究表明感受器后突触对a波有影响[10]。激动或者抑制mGluR5后, ERG的a波幅值出现明显的降低或升高; 但a波的敏感度并未出现明显的变化。Rmax表示视杆细胞通道闭合数量的多少, 敏感度则代表活性视紫红质的含量[11], 说明调控mGluR5后, 主要影响的是视杆细胞通道闭合的数量。ERG的b波起源于代谢型谷氨酸受体6(mGluR6)介导的G蛋白偶联通路, 尤其是暗适应ERG的b波, 主要来源于ON型视杆双极细胞[12]。调控mGluR5后, b波幅值出现明显的改变, 但b/a值并未出现明显异常, 推测b波幅值的降低可能主要源于a波幅值的降低。Ops是一组重叠在ERG b波上升支上具有较高频率、较低幅值的节律性小波[13], 一般认为起源于内层视网膜, 可能来自于无长突细胞或抑制性反馈回路[14]。调控mGluR5后, Ops的变化不明显, 可以推测其对内层视网膜对光反应的贡献较少。

mGluR5在大鼠视网膜中主要分布在外丛状层、内核层和内丛状层, 在视杆双极细胞、无长突细胞以及Mü ller细胞上均有表达[15]。mGluR5可以通过G蛋白偶联受体调控内质网的钙离子浓度, 影响钙离子电流及氯离子电流。虽然其在视杆双极细胞上有表达, 但视杆双极细胞的功能主要由mGluR6调控, 而mGluR5是否影响视杆双极细胞的功能还需要进一步的研究。光感受器细胞上并不表达mGluR5, 但其功能却受到明显的影响。我们推测, 主要是由于Mü ller细胞的调控。Mü ller细胞作为一种横贯视网膜的胶质细胞, 具备维持视网膜内谷氨酸代谢、水及钾离子平衡等功能, 特异性的损伤或敲除某一部分功能可以导致ERG幅值的改变[16]

特别是, 选择性地敲除Mü ller细胞后, 会使得ERG的a波幅值降低52.8%, b波幅值降低约58.7%[17]。我们推测是因为Mü ller细胞参与了胞外谷氨酸的代谢, Mü ller细胞受抑制后, 胞外谷氨酸浓度增加, 会过度激活mGluR5导致视网膜功能受损。而激活mGluR5后, 则会进一步降低Mü ller细胞的谷氨酸代谢能力[18]。下一步需要相关的实验进行确认, 并探讨其相关的具体机制。

在青光眼、视网膜色素变性等疾病中[7], 谷氨酸代谢会出现紊乱, 尤其是会出现谷氨酸浓度升高导致兴奋性毒性作用, 进一步地引起谷氨酸受体被激活。本研究表明当mGluR5被过度激活后, 视网膜整体功能受到损伤, 尤其是光感受器的对光反应能力减弱。而选择性地抑制mGluR5则可以提升视网膜光感受器的对光反应能力。

综上所述, mGluR5主要调控视网膜外层的视网膜对光反应能力。为进一步治疗光感受器细胞凋亡等疾病提供了一定的理论基础。

利益冲突申明 本研究无任何利益冲突

作者贡献声明 戴加满:分析实验、数据, 撰写论文。何军材:收集数据。李世迎:参与选题、设计, 修改论文中关键性结果、结论。阴正勤:修改论文中关键性结果、结论

The authors have declared that no competing interests exist.

参考文献
[1] Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina[J]. Prog Retin Eye Res, 1999, 18(6): 765-810. [本文引用:1]
[2] Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons[J]. Prog Neurobiol, 2004, 73(2): 127-150. DOI: 10.1016/j.pneurobio.2004.04.002. [本文引用:1]
[3] Gerber U, Gee CE, Benquet P. Metabotropic glutamate receptors: intracellular signaling pathways[J]. Curr Opin Pharmacol, 2007, 7(1): 56-61. DOI: 10.1016/j.coph.2006.08.008. [本文引用:1]
[4] Jin DZ, Xue B, Mao LM, et al. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII[J]. Brain Res, 2015, 1624: 414-423. DOI: 10.1016/j.brainres.2015.07.053. [本文引用:1]
[5] Brown RM, Mustafa S, Ayoub MA, et al. mGlu5 Receptor Functional Interactions and Addiction[J]. Front Pharmacol, 2012, 3: 84. DOI: 10.3389/fphar.2012.00084. [本文引用:1]
[6] Vanzulli I, Butt AM. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter[J]. Cell Calcium, 2015, 58(5): 423-430. DOI: DOI:10.1016/j.ceca.2015.06.010. [本文引用:1]
[7] Ji M, Miao Y, Dong LD, et al. Group I mGluR-mediated inhibition of Kir channels contributes to retinal Muller cell gliosis in a rat chronic ocular hypertension model[J]. J Neurosci, 2012, 32(37): 12744-12755. DOI: 10.1523/JNEUROSCI.1291-12.2012. [本文引用:2]
[8] Gao F, Li F, Miao Y, et al. Group I metabotropic glutamate receptor agonist DHPG modulates Kir4. 1 protein and mRNA in cultured rat retinal Müller cells[J]. Neurosci Lett, 2015, 588: 12-17. DOI: 10.1016/j.neulet.2014.12.048. [本文引用:1]
[9] Akula JD, Mocko JA, Moskowitz A, et al. The oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci, 2007, 48(12): 5788-5797. DOI: 10.1167/iovs.07-0881. [本文引用:1]
[10] Friedburg C, Allen CP, Mason PJ, et al. Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram[J]. J Physiol, 2004, 556(Pt 3): 819-834. DOI: 10.1113/jphysiol.2004.061523. [本文引用:1]
[11] Bradshaw K. Contribution of post-receptoral cells to the a-wave of the human photopic electroretinogram[J]. Vision Res, 2007, 47(22): 2878-2888. DOI: 10.1016/j.visres.2007.07.021. [本文引用:1]
[12] Lamb TD, Pugh EN. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors[J]. J Physiol, 1992, 449: 719-758. [本文引用:1]
[13] Koike C, Obara T, Uriu Y, et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade[J]. Proc Natl Acad Sci USA, 2010, 107(1): 332-337. DOI: 10.1073/pnas.0912730107. [本文引用:1]
[14] Zhou W, Rangaswamy N, Ktonas P, et al. Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method[J]. Vision Res, 2007, 47(15): 2021-2036. DOI: 10.1016/j.visres.2007.03.021. [本文引用:1]
[15] Dong CJ, Agey P, Hare WA. Origins of the electroretinogram oscillatory potentials in the rabbit retina[J]. Vis Neurosci, 2004, 21(4): 533-543. DOI: 10.1017/S0952523804214043. [本文引用:1]
[16] Koulen P, Kuhn R, Wässle H, et al. Group I metabotropic glutamate receptors mGluR1alpha and mGluR5a: localization in both synaptic layers of the rat retina[J]. J Neurosci, 1997, 17(6): 2200-2211. [本文引用:1]
[17] Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003. [本文引用:1]
[18] Shen W, Fruttiger M, Zhu L, et al. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model[J]. J Neurosci, 2012, 32(45): 15715-15727. DOI: 10.1523/JNEUROSCI.2841-12.2012. [本文引用:1]