应用Fourier分析法对比FS-LASIK与TPRK矫正散光的准确性
江露, 谢文, 胡中立, 周海涛, 徐鹏, 胡亮, 吕帆
325027 温州医科大学眼视光学院
通信作者:吕帆,Email: lufan@mail.eye.ac.cn
摘要

目的 应用Fourier分析法对比飞秒激光制瓣准分子激光原位角膜磨镶术(FS-LASIK)与经上皮准分子激光角膜切削术(TPRK)矫正近视散光的准确性。方法 回顾性病例对照研究。选取2015年6月至2016年6月在温州医科大学附属眼视光医院行FS-LASIK及TPRK手术的近视散光患者共267例(453眼),其中FS-LASIK组137例(228眼),TPRK组130例(225眼)。分别收集术前及术后3~6个月间最早的一次随访数据,包括裸眼视力(UCVA)、最佳矫正视力(BCVA)、主觉验光度数、角膜地形图等。应用Fourier分析法将术前、术后屈光度转换成术前总散光(TJ0、TJ45),术前角膜散光(CJ0、CJ45),术后总散光(RJ0、RJ45)及散光矫正率(CRJ0、CRJ45),比较2组散光矫正的准确性。2组间数据比较采用协方差及Mann-Whitney U秩和检验,组内数据比较采用Wilcoxon符号秩和检验。结果 FS-LASIK组散光分量及矫正率为TJ0=0.369 D,TJ45=-0.043 D,CJ0=0.695 D,CJ45=-0.018 D,RJ0=0.000 D,RJ45=0.000 D,CRJ0=100%,CRJ45=100%,TPRK组的散光分量及矫正率为TJ0=0.369 D,TJ45=0.000 D,CJ0=0.600 D,CJ45=0.003 D,RJ0=0.000 D,RJ45=0.000 D,CRJ0=100%,CRJ45=100%。2组间相比,TJ0、TJ45、CJ45、RJ45、CRJ45的差异无统计学意义;FS-LASIK组CJ0、RJ0大于TPRK组( Z=-2.615, P=0.009; Z=-2.419, P=0.016);TPRK组CRJ0大于FS-LASIK组( Z=-1.978, P=0.048)。组内参数相比,FS-LASIK组TJ0大于TJ45,CJ0大于CJ45(Z=-10.886、-12.926, P<0.001),RJ0与RJ45、CRJ0与CRJ45差异无统计学意义;TPRK组TJ0大于TJ45,CJ0大于CJ45 Z=-10.539、-12.735, P<0.001),RJ0与RJ45、CRJ0与CRJ45差异无统计学意义。结论 FS-LASIK及TPRK手术矫正近视散光的垂轴成分及斜轴成分的散光都具有较高的准确性。

关键词: Fourier分析法; 飞秒激光; 准分子激光原位角膜磨镶术; 经上皮准分子激光角膜切削术; 散光
Fourier Analysis for Comparing the Accuracy of Myopic Astigmatism orrection by FS-LASIK and TPRK
Lu Jiang, Wen Xie, Zhongli Hu, Haitao Zhou, Peng Xu, Liang Hu, Fan Lu
School of Ophthalmology and Optometry,Wenzhou Medical University, Wenzhou 325027, China
Corresponding author: Fan Lu, School of Ophthalmology and Optometry,Wenzhou Medical University, Wenzhou 325027, China (Email: lufan@mail.eye.ac.cn)
Abstract

Objective: To use Fourier analysis to evaluate the accuracy of myopic astigmatism correction in femtosecond laser in situ keratomileusis (FS-LASIK) and transepithelial photorefractive keratectomy (TPRK).Methods: A total of 267 myopic astigmatism patients (453 eyes) were included in this retrosp-ective case group study. Patients were treated with either FS-LASIK ( n=137, 228 eyes) or TPRK ( n=130, 225 eyes) at the Eye Hospital of Wenzhou Medical University from June, 2015 to June, 2016. Uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), refraction, and corneal topography were measured preoperatively and postoperatively at 3 to 6 months. Fourier analysis was used to transform the preoperative astigmatism to TJ0 and TJ45, the preoperative corneal astigmatism to CJ0and CJ45, the postoperative residual astigmatism to RJ0 and RJ45, and the astigmatism correction rate to CRJ0 and CRJ45. Covariance rank sum test, Mann-Whitney U test, and Wilcoxon signed rank sum test were used for statistical analyses.Results: For the FS-LASIK group, TJ0=0.369 D, TJ45=-0.043 D, CJ0=0.695 D, CJ45=-0.018 D, RJ0=0.000 D, RJ45=0.000 D, CRJ0=100%, CRJ45=100%. For the TPRK group, TJ0=0.369 D, TJ45=0.000 D, CJ0=0.600 D, CJ45=0.003 D, RJ0=0.000 D, RJ45=0.000 D, CRJ0=100%, CRJ45=100%. Comparing between FS-LASIK and TPRK, the values for TJ0, TJ45, CJ45, RJ45, CRJ45were not statistically significant ( P>0.05). CJ0 and RJ0 in the FS-LASIK group were higher than in the TPRK group ( Z=-2.615, P=0.009; Z=-2.419, P=0.016). CRJ0 in the TPRK group was significantly higher than in the FS-LASIK group ( Z=-1.978, P=0.048). For intra-group comparisons, TJ0and CJ0 were statistically higher than TJ45 and CJ45 in the FS-LASIK group ( Z=-10.886, -12.926, both P<0.001). RJ0 and RJ45, and CRJ0 and CRJ45 were not significantly different. TJ0 and CJ0 were statistically higher than TJ45 and CJ45 in the TPRK group ( Z=-10.539, -12.735, both P<0.001). RJ0 and RJ45, and CRJ0 and CRJ45 were not significantly different.Conclusions: Both FS-LASIK and TPRK have high accuracy in the correction of cartesian astigmatism and oblique astigmatism.

Keyword: Fourier analysis; femtosecond laser; laser in situ keratomileusis; transepithelial photorefractive keratectomy; astigmatism

角膜屈光手术是目前矫正近视的主流趋势, 而且已被证实有着较好的安全性与有效性[1, 2, 3]。其中飞秒激光制瓣的准分子激光原位角膜磨镶术(Femto-second laser in situ keratomileusis, FS-LASIK)为目前开展最多的一类角膜屈光手术[4, 5], 其具有恢复快、视觉质量高等优势, 但存在术后角膜瓣相关并发症及角膜扩张等风险[6, 7, 8]。经上皮准分子激光角膜切削术(Transepithelial photorefractive keratectomy, TPRK)与其他术式相比, 具有无角膜瓣、无负压吸引、生物力学较稳定的优势, 更适合薄角膜高度数的患者, 虽然患者术后视力恢复较慢, 但远期满意度仍然很高[1, 9, 10, 11, 12, 13]

已有大量研究评估和比较不同手术方式对患者视觉质量的影响, 其中也包括了对散光的评估[14, 15]。屈光手术对散光的精确矫正也是获得术后较佳视觉质量的必要条件。以往评估散光大多直接用传统的柱镜度分析, 但忽略了轴向变化的影响, 比如术前为顺规散光, 术后散光度数变小且轴向变为斜轴散光, 这样就无法定量地准确反映散光度数及方向的变化情况[16, 17, 18, 19]。本研究通过Fourier矢量分析法处理散光数据, 综合散光轴向与度数变化, 定量分析FS-LASIK和TPRK手术治疗散光的准确性。

1 对象与方法
1.1 对象

收集自2015年6月至2016年6月间在温州医科大学附属眼视光医院行TPRK(AMARIS准分子激光系统, 德国SCHWIND)及FS-LASIK角膜激光手术(WaveLight FS200, 德国鹰视; AMARIS准分子激光系统, 德国SCHWIND)的患者共267例(453眼), 其中FS-LASIK组137例(228眼), TPRK组130例(225眼)。入选标准:①术前等效球镜度(SE)为-3.0~-13.0 D; ②术前散光度为-0.50~-3.0 D; ③年龄17~35岁; ④既往无激光手术或白内障手术等眼部手术史; ⑤排除相关眼部疾病和可能影响视力的全身系统性疾病(如高血压、糖尿病等); ⑥术后矫正目标为正视。

1.2 方法

1.2.1 常规检查 收集各组术前及术后3~6个月之间最早的一次随访数据, 包括裸眼视力(UCVA)、最佳矫正视力(BCVA)、主觉验光度数、角膜地形图、角膜厚度、剩余基质厚度、眼轴长度、眼压、裂隙灯显微镜检查、散瞳下眼底检查, 以及术前患者个人信息如年龄、性别等。

1.2.2 矢量分析法 利用Fourier矢量分析原理[14, 20, 21], 将术前及术后屈光度数(S/C× α )转换为SE、J0及J45。将术前总散光(术前主觉验光)转换为TJ0、TJ45, 术前角膜散光(角膜地形图K1-K2计算得到)转换为CJ0、CJ45, 术后残余散光转换为RJ0、RJ45, 并计算各散光成分的矫正率CRJ0、CRJ45。计算公式见①-⑤。

SE=S+C/2 ①

J0=-C/2cos(2α ) ②

J45=-C/2sin(2α ) ③

CRJ0=(TJ0-RJ0)/TJ0

CRJ45=(TJ45-RJ45)/TJ45

其中S为球镜度, C为柱镜度, α 为散光轴(弧度制), SE为等效球镜度, J0为正代表顺规散光, J0为负代表逆规散光, J45为斜轴散光, TJ0为术前水平及垂直方向上的总散光; TJ45为术前斜轴方向上的总散光; CJ0为术前水平及垂直方向上的角膜总散光; CJ45为术前斜轴方向上的角膜散光, RJ0为术后水平及垂直方向上的残余散光, TJ45为术后斜轴方向上的残余散光, CRJ0为水平及垂直方向上的散光矫正率, CJ45为斜轴方向上的散光矫正率。

1.3 统计学方法

回顾性病例对照研究。采用SPSS 23.0统计学软件进行数据分析。视力数据均转换为LogMAR视力进行分析。FS-LASIK组和TPRK组术前、术后UCVA、BCVA、SE、柱镜度及TJ0、TJ45, CJ0、CJ45, RJ0、RJ45, CRJ0、CRJ45采用中位数及四分位数描述。2组间术后SE差异采用协方差秩和检验进行比较, 其余2组间差异采用Mann-Whitney U秩和检验进行比较, 组内差异采用wilcoxon符号秩和检验进行比较。以P< 0.05为差异有统计学意义。

2 结果
2.1 一般情况

本研究共纳入267例(453眼), 其中男145例, 女122例, 年龄17~35岁, 平均(22.6± 4.8)岁。FS-LASIK组及TPRK组一般情况见表1。FS-LASIK组术前、术后UCVA及BCVA优于TPRK组(Z=-6.745、-4.249、-4.839、-5.746, P< 0.001)。TPRK组术前SE大于FS-LASIK组(Z=-5.164, P< 0.001), 2组间术后SE差异无统计学意义(Z=-0.103, P= 0.755)。2组间术前、术后散光度差异无统计学意义(Z=-0.311、-1.707, P> 0.05)。2组术后所有眼残余SE均在± 1.50 D以内(见图1), 术后残余散光均在-1.25 D以内, 见图2。

表1 FS-LASIK组及TPRK组患者一般情况 Table1 General data for patients with FS-LASIK group and TPRK group

图1. 2组术后不同程度残余等效球镜度病例所占百分比Figure 1. Percentage of postoperative spherical equivalent cases in the FS-LASIK and TPRK groups.
FS-LASIK, femtosecond laser in situ keratomileusis; TPRK, transepith-elial photorefractive keratectomy. n, number of eyes.

图2. 2组术后不同程度残余散光病例所占百分比Figure 2. Percentage of postoperative residual astigmatism cases in the FS-LASIK and TPRK groups.
FS-LASIK, femtosecond laser in situ keratomileusis; TPRK, transepith-elial photorefractive keratectomy. n, number of eyes.

2.2 FS-LASIK组与TPRK组间散光分析

2组间TJ0、TJ45、CJ45、RJ45、CRJ45的差异无统计学意义(Z=-0.128、-1.328、-0.137、-0.064、-1.198, P> 0.05); FS-LASIK组CJ0、RJ0大于TPRK组, 差异有统计学意义(Z=-2.615, P=0.009; Z=-2.419, P=0.016); CRJ0小于TPRK组, 差异有统计学意义(Z=-1.978, P=0.048)。由于2组间CRJ0差异有统计学意义, 但中位数均为100%, 为了反映2组CRJ0哪一组更接近100%, 用200%减去大于100%的数据, 转化为小于100%的数据即CRJ0转化值, 2组间CRJ0转化值差异无统计学意义(Z=-1.360, P=0.174)。见表2。2组J0及J45方向散光矫正率(CRJ0、CRJ45)分别见图3、图4, CRJ0转化值见图5。

表2 FS-LASIK组及TPRK组散光分量比较 Table 2 Astigmatism component of FS-LASIK and TPRK groups

图3. 2组J0方向不同程度散光矫正率病例所占百分比
CRJ0, J0方向散光矫正率
Figure 3. Percentage of J0 astigmatism correction rate cases in the FS-LASIK and TPRK groups.
FS-LASIK, femtosecond laser in situ keratomileusis; TPRK, transepith-elial photorefractive keratectomy; CRJ0, J0 component of the astigmatism correction rate.

图4. 2组J45方向不同程度散光矫正率病例所占百分比
CRJ45, J45方向散光矫正率
Figure 4. Percentage of J45 astigmatism correction rate cases in the FS-LASIK and TPRK groups.
FS-LASIK, femtosecond laser in situ keratomileusis; TPRK, transepithelial photorefractive keratectomy; CRJ45, J45 component of the astigmatism corr-ection rate

图5. 2组J0方向不同程度散光矫正率转化值病例所占百分比
CRJ0, J0方向散光矫正率; CRJ0转化值, 200%-CRJ0
Figure 5. Percentage of CRJ0 converted value cases in the FS-LASIK and TPRK groups.
FS-LASIK, femtosecond laser in situ keratomileusis; TPRK, transepithelial photorefractive keratectomy; CRJ0 converted value, 200%-CRJ0

2.3 FS-LASIK组与TPRK组内散光分析结果

FS-LASIK组TJ0大于TJ45, CJ0大于CJ45, 差异有统计学意义(Z=-10.886、-12.926, P< 0.001), RJ0与RJ45、CRJ0与CRJ45差异无统计学意义(Z=-1.606、-0.224, P > 0.05); TPRK组TJ0大于TJ45, CJ0大于CJ45, 差异有统计学意义(Z=-10.539、-12.735, P< 0.001), RJ0与RJ45、CRJ0与CRJ45差异无统计学意义(Z=-1.869、-0.160, P > 0.05)。

3 讨论

Fourier矢量分析法把屈光度数进行矢量分解, 转化成三维参数(M、J0及J45)[21, 22, 23], 能够直观地体现散光轴向及度数的变化情况, 避免了术后简单相减法因忽略散光方向变化所致的误差[16, 20, 24]。它除了应用在角膜屈光手术领域, 眼内晶状体手术也经常使用此方法分析矫正散光的准确性[19, 25]

以往研究显示, 角膜屈光术后散光矫正的早期效果多受术中矫正散光的大小及方向的影响, 而长期散光矫正效果则多受手术愈合反应、手术种类、手术质量、术前角膜参数以及屈光状态的影响[26]。角膜屈光手术的残余散光与屈光回退会不同程度地影响手术矫正效果, 所以精确的矫正效果是屈光领域一直以来的追求目标[17]。术前度数较高、角膜过薄以及厚角膜瓣等因素, 导致角膜抗张强度降低, 从而引起屈光回退。近几十年来, 随着屈光手术技术和参数的不断完善, 目前屈光回退率已大大降低。多项对散光的研究发现[17, 27, 28, 29], 屈光手术可能会引入部分术源性散光。一方面, 术源性散光的引入与患者术前散光及屈光度数有关。Shah等[30]研究表明, 单纯矫正球镜的PRK手术后出现了大于0.75 D的散光。也有学者发现[15], PRK和LASIK矫正无散光近视术后也出现了0.75 D以上的散光。另外一些矢量研究发现, 对于低度近视散光屈光术后存在过矫趋势[31], 而对于高度散光随着随访时间延长逐渐呈现欠矫[28]。这些研究结果对屈光手术调整预期矫正值有着重要指导意义。

术源性散光的引入可能与角膜瓣有关, Huang 等[32]发现LASIK术后柱镜切削引起的球镜度变化比预期大, 角膜瓣会引入约0.12 D顺规散光, 因角膜瓣蒂部所在的子午线会相对其他方向更陡峭[15, 33]。TPRK属于激光表层角膜屈光手术, 利用准分子激光一步式完成去上皮及角膜切削过程, 无角膜瓣, 理论上减少了角膜瓣造成的术源性角膜散光, 但若发生角膜上皮下混浊(haze), 其不规则的上皮增厚也有可能导致术源性散光。本研究发现, 2组术前总散光TJ0差异无统计学意义, FS-LASIK组术后残余散光RJ0大于TPRK组, 差异有统计学意义, 与此结果一致。然而由于FS-LASIK组术前角膜散光CJ0大于TPRK组, 差异有统计学意义, 且两者J0方向的散光矫正率均为100%, 表明2种手术矫正垂轴方向散光的矫正率都很高。这是由于传统的LASIK手术使用机械刀制瓣, 比现在的飞秒激光制瓣的角膜瓣相对厚很多, 引入的术源性散光自然就大。FS-LASIK将角膜瓣蒂留在上方, 对J0的影响较J45低, 对斜轴方向可能会产生不规则改变, 可能会引起误矫(矫正率< 0)或者过矫(矫正率 > 100%)[34, 35]。本研究发现FS-LASIK手术对J45的矫正准确性仍较高, 并未发现过矫或者欠矫情况。将组内J0及J45参数进行对比, 发现2组术前总散光及角膜散光J0都大于J45, 术后残余散光J0与J45差异无统计学意义, 且J0与J45矫正率差异无统计学意义。术前大多患者为顺规散光, 且来自于角膜散光, 故J0成分大于J45成分, 通过手术矫正后, 患者残余的垂轴成分及斜轴成分的散光相近, 表明2种手术对患者的J0及J45矫正都有较高的准确性, 而且准确性相近。

本研究选择中高度近视患者, 散光为-0.5~-3.0 D, 2组术前柱镜度及TJ0、TJ45、CJ45差异无统计学意义, FS-LASIK组术前角膜散光分量CJ0及术后残余散光RJ0大于TPRK组, FS-LASIK组散光矫正率CRJ0为100%(73.82%~120.80%), TPRK组CRJ0为100%(77.14%~141.92%), 虽然TPRK手术CRJ0大于FS-LASIK, 但不能以此说明TPRK矫正J0散光准确性高于FS-LASIK, 通过四分位数结果可以看出TPRK可能趋向于过矫(CRJ0 P25~P75趋向于大于100%, 且所占病例百分比为45.0%), 而FS-LASIK手术可能趋向于欠矫(CRJ0 P25~P75相较于FS-LASIK趋向于小于100%, CRJ0小于100%的病例占35.8%), TPRK组CRJ0小于100%、等于100%、大于100%所占病例百分比分别为31.1%、24.0%、45.0%, FS-LASIK组为35.8%、28.8%、35.4%。然而过矫与欠矫同样不好, 并不是矫正率越高越好, 而是越接近100%越好。为了反映2组CRJ0转化哪一组更接近100%, 将200%减去大于100%的数据, 转化为小于100%的数据即CRJ0转化值, 发现转化后的2组数据间差异无统计学意义, 表明2种手术对J0方向的散光矫正率相似。因此, FS-LASIK角膜瓣的存在并不会对角膜散光造成较大影响。Lee和Joo[36]的研究显示LASIK手术角膜瓣蒂是位于上方还是鼻侧对术后视力并不存在明显影响。Gü ell等[37]的研究结果同样显示角膜瓣蒂的位置并不会影响术后的屈光结果。Christiansen等[15]发现, PRK与LASIK矫正近视散光患者两者差异无统计学意义, 与本研究结果一致。胡亮等[24]用矢量分析法研究术后散光变化, 发现手术对顺规散光患者垂轴成分的矫正准确性高于对斜轴散光成分的矫正准确性, 本研究显示角膜屈光手术对垂轴及斜轴成分散光都有较高的准确性。表明屈光手术技术的不断发展, 使得角膜瓣更光滑均匀、激光切削更精准、术后炎症反应减轻等, 随之对散光的矫正率也得到提升。

另一方面, 手术切削中心与光学中心的移位与偏心也可能是导致术后散光产生的原因[38]。在术前检查时患者处于坐位, 而手术体位为卧位, 患者从坐位变换到卧位时会发生生理性眼球旋转, 在手术过程中患者眼球也可能会发生一定旋转, 但手术医师肉眼并不能发现轻微的旋转。故患者体位的改变和术中眼球自身的旋转等导致了术前设定的轴向与手术实际矫正的轴向存在偏差[39]。角膜屈光手术多以瞳孔中心作为切削光学区中心的参考点, 而瞳孔中心也会因光线的变化而变化[40], 所以检查时和手术时的光线亮度统一也很重要。一项随访1年的研究发现, 即使屈光手术的校正指数为1, 离手术的理想值(散光为0 D)仍然有20%左右的偏差, 并分析最可能的原因为手术过程中的轴向偏移[41]。几项研究表明, 大多数患者术中瞳孔中心会出现0.2 mm的位移, 超过一半的患者会出现2° 的眼球旋转[42, 43]。虽然轻微的轴向改变不会对视力造成显著影响, 然而对于术前高度散光的患者, 较小幅度的眼球旋转或者瞳孔中心移位就会引起较大影响。另一项矢量分析结果显示, 矫正轴向偏差5° 时, 矫正效果会降低1.5%, 当偏差15° 时降低13.4%, 偏差30° 时下降高达50%[44]。因此可见改进防止眼球旋转及瞳孔变化导致偏心切削的仪器设备, 对屈光手术具有重要意义。

本研究FS-LASIK组术后UCVA及BCVA大于TPRK组, 但并不代表TPRK术后视觉质量不如FS-LASIK手术。由于TPRK更适合高度数、薄角膜患者, 所以行TPRK手术的患者术前近视度数大于行FS-LASIK手术的患者, 2组患者术后SE及柱镜度差异无统计学意义, 说明2种手术都能很好地矫正近视和散光。另一方面, 由于TPRK术后本身视力恢复较慢, 故术后近期视力较FS-LASIK及单飞秒手术相对较差, 但多项研究表明其远期最终矫正视力不亚于FS-LASIK及其他角膜屈光手术[45, 46, 47]

本研究应用矢量分析法客观、准确地描述了FS-LASIK与TPRK矫正散光效果的特点, 发现2种手术矫正角膜垂轴和斜轴方向的散光都具有较高的准确性, 相较于之前的研究散光矫正的准确性有所提升。然而, 由于矢量分析方法所分析的各项参数是基于主觉验光结果计算而得出的, 因此并非实际测量的参数。所以手术医生可以借助矢量分析方法, 结合临床手术经验, 进一步调整个性化正常值(nomogram)预防欠矫及过矫, 从而完善个性化手术设计, 提高患者术后视觉质量。由于术前散光患者大部分为顺规散光, 本研究并未对术前患者散光进行分组, 如果将这些数据进行分组分析可能会更好地反映角膜屈光术后散光分量的变化情况。鉴于眼球旋转、瞳孔中心移位及TPRK视力恢复较慢, 在以后的研究中可以进一步分析眼球旋转、瞳孔中心移位与散光分量变化的相关性, 而且进行长期随访以研究各个因素与散光分量的影响有一定的必要性。

利益冲突申明 本研究无任何利益冲突

作者贡献声明 江露:选题、设计及资料的分析和解释; 撰写论文; 对编辑部的修改意见进行修改。谢文、胡中立、周海涛:收集数据; 胡亮:选题、设计、资料的分析和解释, 修改论文中关键性结果、结论, 对编辑部的修改意见进行修改。徐鹏:选题、设计及资料的分析、解释及指导。吕帆:选题、设计及资料的分析、解释及指导

The authors have declared that no competing interests exist.

参考文献
[1] Rubinfeld RS, Trattler WB, Talamo J, et al. Screening ofrefractive surgery cand idates for LASIK and PRK. Cornea, 2015, 34(5): e13-14. DOI: DOI:10.1097/ICO.0000000000000415. [本文引用:2]
[2] Sugar A, Hood CT, Mian SI. Patient-Reported Outcomes Following LASIK: Quality of Life in the PROWL Studies. JAMA, 2017, 317(2): 204-205. DOI: DOI:10.1001/jama.2016.19323. [本文引用:1]
[3] Moshirfar M, Jehangir N, Fenzl CR, et al. LASIK Enhancement: Clinical and Surgical Management. J Refract Surg, 2017, 33(2): 116-127. DOI: DOI:10.3928/1081597X-20161202-01. [本文引用:1]
[4] Zhang Y, Shen Q, Jia Y, et al. Clinical Outcomes of SMILE and FS-LASIK Used to Treat Myopia: A Meta-analysis. J Refract Surg, 2016, 32(4): 256-265. DOI: DOI:10.3928/1081597X-20151111-06. [本文引用:1]
[5] Wu W, Wang Y. Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after SMILE, FS-LASIK, and FLEx surgeries. Eye Contact Lens, 2016, 42(6): 358-365. DOI: DOI:10.1097/ICL.0000000000000225. [本文引用:1]
[6] Vahdati A, Seven I, Mysore N, et al. Computational Biomechanical Analysis of Asymmetric Ectasia Risk in Unilateral Post-LASIK Ectasia. J Refract Surg, 2016, 32(12): 811-820. DOI: DOI:10.3928/1081597X-20160929-01. [本文引用:1]
[7] Nabil KM. Flap double twist technique for prevention of LASIKflap striae. Clin Ophthalmol, 2016, 10: 2325-2328. DOI: DOI:10.2147/OPTH.S121237. [本文引用:1]
[8] Estopinal CB, Mian SI. LASIK Flap: Postoperative Complications. Int Ophthalmol Clin, 2016, 56(2): 67-81. DOI: DOI:10.1097/IIO.0000000000000107. [本文引用:1]
[9] Jahadi HSH, Abtahi SM, Khalili MR. Comparison of higher order aberrations after Wavefront-guided LASIK and PRK: One year follow-up results. J Ophthalmic Vis Res, 2016, 11(4): 350-357. DOI: DOI:10.4103/2008-322X.194069. [本文引用:1]
[10] Hashemi H, Miraftab M, Ghaffari R, et al. Femtosecond-assisted LASIK versus PRK: Comparison of 6-month visual acuity and quality outcome for high myopia. Eye Contact Lens, 2016, 42(6): 354-357. DOI: DOI:10.1097/ICL.0000000000000216. [本文引用:1]
[11] Hashemi H, Ghaffari R, Miraftab M, et al. Femtosecond laser-assisted LASIK versus PRK for high myopia: comparison of 18-month visual acuity and quality. Int Ophthalmol, 2017, 37(4): 995-1001. DOI: DOI:10.1007/s10792-016-0364-7. [本文引用:1]
[12] Sia RK, Coe CD, Edwards JD, et al. Visual outcomes after Epi-LASIK and PRK for low and moderate myopia. J Refract Surg, 2012, 28(1): 65-71. DOI: DOI:10.3928/1081597X-20111004-01. [本文引用:1]
[13] 胡亮, 王勤美. 三种全激光角膜屈光手术技术要点与前景. 中华眼视光学与视觉科学杂志, 2016, 18(4): 193-198. DOI: DOI:10.3760/cma.j.issn.1674-845X.2016.04.001. [本文引用:1]
[14] Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis ofrefractive error. Optom Vis Sci, 1997, 74(6): 367-375. [本文引用:2]
[15] Christiansen SM, Mifflin MD, Edmonds JN, et al. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism <1. 00 D. Clin Ophthalmol, 2012, 6: 2109-2117. DOI: DOI:10.2147/opth.s37489. [本文引用:4]
[16] 张佳媚, 王雁. 矢量分析法在评价角膜屈光手术矫正散光效果中的应用. 中华眼科杂志, 2016, 52(1): 63-67. DOI: DOI:10.3760/cma.j.issn.0412-4081.2016.01.017 [本文引用:2]
[17] Chan TC, Ng AL, Cheng GP, et al. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecond-assisted LASIK for low to moderate myopic astigmatism. Br J Ophthalmol, 2016, 100(4): 553-559. DOI: DOI:10.1136/bjophth-almol-2015-307238. [本文引用:3]
[18] Trivizki O, Levinger E, Levinger S. Correction ratio and vector analysis of femtosecond laser arcuate keratotomy for the correction of post-mushroom profile keratoplasty astigmatism. J Cataract Refract Surg, 2015, 41(9): 1973-1979. DOI: DOI:10.1016/j.jcrs.2015.10.011. [本文引用:1]
[19] Savini G, Ducoli P, Schiano LD. Vector analysis after toric intr-aocular lens implantation to correct astigmatism. J Cataract Refract Surg, 2015, 41(6): 1339. DOI: DOI:10.1016/j.jcrs.2015.05.011. [本文引用:2]
[20] Thibos LN, Horner D. Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg, 2001, 27(1): 80-85. [本文引用:2]
[21] Biscevic A, Bohac M, Koncarevic M, et al. Vector analysis of astigmatism before and after LASIK: a comparison of two different platforms for treatment of high astigmatism. Graefes Arch Clin Exp Ophthalmol, 2015, 253(12): 2325-2333. DOI: DOI:10.1007/s00417-015-3177-x. [本文引用:2]
[22] Vojniković B, Gabrić N, Dekaris I. How to convert the obliquelycrossed to non-crossed astigmatism? A simple method using vector analysis. Coll Antropol, 2013, 37 Suppl 1: 103-106. [本文引用:1]
[23] Kunert KS, Russmann C, Blum M, et al. Vector analysis of myopic astigmatism corrected by femtosecond refractive lenticule extraction. J Cataract Refract Surg, 2013, 39(5): 759-769. DOI: DOI:10.1016/j.jcrs.2012.11.033. [本文引用:1]
[24] 胡亮, 徐鹏, 崔贺, . 应用Fourier分析法研究准分子激光治疗散光的准确性. 温州医学院学报, 2013, 43(5): 281-285. DOI: DOI:10.3969/j.issn.1000-2138.2013.05.001. [本文引用:2]
[25] Bar-Sela SM, Barequet IS, Spierer A. Vector analysis of high early postoperative astigmatism after congenital cataract surgery. Graefes Arch Clin Exp Ophthalmol, 2005, 243(9): 881-885. DOI: DOI:10.1007/s00417-005-1153-6. [本文引用:1]
[26] Morlet N, Minassian D, Dart J. Astigmatism and the analysis of its surgical correction. Br J Ophthalmol, 2002, 86(12): 1458-1459. [本文引用:1]
[27] Kumar NL, Kaiserman I, Shehadeh-Mashor R, et al. IntraLaseenabled astigmatic keratotomy for post-keratoplasty astigmatism: on-axis vector analysis. Ophthalmology, 2010, 117(6): 1228-1235. e1. DOI: DOI:10.1016/j.ophtha.2009.10.041. [本文引用:1]
[28] Abolhassani A, Shojaei A, Baradaran-Rafiee AR, et al. Vectoranalysis of cross cylinder LASIK with the NIDEK EC-5000 excimer laser for high astigmatism. J Refract Surg, 2009, 25(12): 1075-1082. DOI: DOI:10.3928/1081597X-20091117-06. [本文引用:2]
[29] Rosa N. Multiple regression and vector analysis of LASIK formyopia and astigmatism. J Refract Surg, 2001, 17(5): 620. [本文引用:1]
[30] Shah S, Chatterjee A, Doyle SJ, et al. Astigmatism induced byspherical photorefractive keratectomy corrections. Ophthalmology, 1997, 104(8): 1317-1320. [本文引用:1]
[31] Frings A1, Katz T, Richard G, et al. Efficacy and predictability of laser in situ keratomileusis for low astigmatism of 0. 75 diopter or less. J Cataract Refract Surg, 2013, 39(3): 366-377. DOI: DOI:10.1016/j.jcrs.2012.09.024 [本文引用:1]
[32] Huang D, Stulting RD, Carr JD, et al. Multiple regression and vector analyses of laser in situ keratomileusis for myopia and astigmatism. J Refract Surg, 1999, 15(5): 538-549. [本文引用:1]
[33] Sharma N1, Pangtey MS, Vajpayee RB, et al. Surgically induced astigmatism after laser in situ keratomileusis for spherical myopia. J Refract Surg, 2002, 18(3): 239-244. [本文引用:1]
[34] Arbelaez MC, Vidal C, Arba-Mosquera S. Excimer laser corr-ection of moderate to high astigmatism with a non-wavefront-guided aberration-free ablation profile: Six-month results. J Cataract Refract Surg, 2009, 35(10): 1789-1798. DOI: DOI:10.1016/j.jcrs.2009.05.035. [本文引用:1]
[35] Katz T, Wagenfeld L, Galambos P, et al. LASIK versus photo-refractive keratectomy for high myopic (>3 diopter) astigmatism. J Refract Surg, 2013, 29(12): 824-831. DOI: DOI:10.3928/1081597X-20131029-03. [本文引用:1]
[36] Lee KW, Joo CK. Clinical results of laser in situ keratomileusis with superior and nasal hinges. J Cataract Refract Surg, 2003, 29(3): 457-461. [本文引用:1]
[37] Güell JL1, Velasco F, Roberts C, et al. Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis. J Cataract Refract Surg, 2005, 31(1): 115-119. DOI: DOI:10.1016/j.jcrs.2004.09.045. [本文引用:1]
[38] Mrochen M, Kaemmerer M, Mierdel P, et al. Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg, 2001, 27(3): 362-369. [本文引用:1]
[39] Liu YL, Yeh PT, Huang JY, et al. Pupil centroid shift and cyclotorsion in bilateral wavefront-guided laser refractive surgery and the correlation between both eyes. J Formos Med Assoc, 2013, 112(2): 64-71. DOI: DOI:10.1016/j.jfma.2012.02.028. [本文引用:1]
[40] Yang Y, Thompson K, Burns SA. Pupil location under mesopic, photopic, and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci, 2002, 43(7): 2508-2512. [本文引用:1]
[41] Zhang J, Wang Y, Wu W, et al. Vector analysis of low to moderate astigmatism with small incision lenticule extraction (SMILE): results of a 1-year follow-up. BMC Ophthalmol, 2015, 15: 8. DOI: DOI:10.1186/1471-2415-15-8. [本文引用:1]
[42] Park SH, Kim M, Joo CK. Measurement of pupil centroid shift and cyclotorsional displacement using iris registration. Ophthalmologica, 2009, 223(3): 166-171. DOI: DOI:10.1159/000194663. [本文引用:1]
[43] Kim H, Joo CK. Ocular cyclotorsion according to body positionand flap creation before laser in situ keratomileusis. J Cataract Refract Surg, 2008, 34(4): 557-561. DOI: DOI:10.1016/j.jcrs.2007.11.030. [本文引用:1]
[44] Alpins NA. Vector analysis of astigmatism changes by flattening, steepening, and torque. J Cataract Refract Surg, 1997, 23(10): 1503-1514. [本文引用:1]
[45] Luger MH, Ewering T, Arba-Mosquera S. Myopia correction with transepithelial photorefractive keratectomy versus femtosecond-assisted laser in situ keratomileusis: One-year casematched analysis. J Cataract Refract Surg, 2016, 42(11): 1579-1587. DOI: DOI:10.1016/j.jcrs.2016.08.025. [本文引用:1]
[46] Luger MH, Ewering T, Arba-Mosquera S. Consecutive myopia correction with transepithelial versus alcohol-assisted photorefractive keratectomy in contralateral eyes: one-year results. J Cataract Refract Surg, 2012, 38(8): 1414-1423. DOI: DOI:10.1016/j.jcrs.2012.03.028. [本文引用:1]
[47] Fadlallah A, Fahed D, Khalil K, et al. Transepithelial photoref-ractive keratectomy: clinical results. J Cataract Refract Surg, 2011, 37(10): 1852-1857. DOI: DOI:10.1016/j.jcrs.2011.04.029. [本文引用:1]