运用高分辨SD-OCT探测视神经脊髓炎谱系疾病视网膜厚度变化
彭晨蕾, William Robert Kwapong, 周煜恒, 何志勇, 沈梅晓, 瞿佳
325027 温州医科大学附属眼视光医院 眼视光学院 生物工程学院(彭晨蕾、William Robert Kwapong、周煜恒、沈梅晓、瞿佳)
325027 温州医科大学附属第二医院 育英儿童医院神经内科(何志勇)
通信作者:瞿佳(ORCID:0000-0003-1678-966X),Email:jqu@wz.zj.cn

第一作者:彭晨蕾(ORCID:0000-0002-0752-8620),Email:346309562@qq.com

摘要

目的 分析视神经脊髓炎谱系疾病(NMOSD)在超高分辨谱域光学相干断层成像(UHR-OCT)中视网膜神经纤维和轴突损伤、视网膜厚度的亚临床变化,以更好地监测疾病进展和治疗该疾病。方法 病例对照研究。利用UHR-OCT分析21例NMOSD患者和20例健康志愿者(健康对照组)的9个区域视网膜结构厚度,并根据NMOSD患者是否伴有视神经炎又分为非视神经炎(NO-ON)组(13眼)和视神经炎(ON)组(13眼)。运用单因素方差分析比较各组之间视网膜厚度的差异。结果 ON组在总厚度上较健康对照组、NO-ON组薄,除中央区外,其余区域差异均有统计学意义(均 P < 0.001)。NO-ON组视网膜总厚度较健康对照组视网膜薄,主要在鼻侧内环( P=0.011)、颞侧内环( P=0.003)以及上侧外环( P=0.019)、下侧外环( P=0.002),差异均有统计学意义。ON组视网膜神经纤维层(RNFL)及神经节细胞层+内丛状层(GCL+IPL)厚度在各象限与健康对照组相比较薄( P < 0.001),NO-ON组的RNFL厚度较健康对照组鼻侧内环( P=0.049)和颞侧( P < 0.001)薄。NO-ON组的GCL+IPL较健康对照组上侧外环( P < 0.001)和下侧外环( P=0.002)薄。ON组内核层厚度较对照组上侧内环( P=0.001)、下侧内环( P=0.003)、颞侧外环( P=0.043)厚,而NO-ON组较对照组在上侧外环( P=0.015)、下侧外环( P=0.012)薄。NO-ON组的Henle纤维层+外核层厚度较对照组比较在上侧内环( P=0.009)、上侧外环( P=0.018)、下侧内环( P=0.001)、下侧外环( P=0.001)有下降,ON组与对照组比较差异无统计学意义。结论 本研究发现NMOSD患者不同层次的视网膜结构存在改变,在视神经未受累眼视网膜RNFL和GCIPL存在厚度下降,提示NMOSD患者未受累眼存在潜在的视网膜神经结构损伤。

关键词: 视神经脊髓炎谱系疾病; 光学相关断层扫描; 神经损伤; 水通道蛋白4
Using High-Resolution SD-OCT to Detect Changes in Retinal Thickness in Neuromyelitis Optica Spectrum Disorders
Chenlei Peng1, William Robert Kwapong1, Yuheng Zhou1, Zhiyong He2, Meixiao Shen1, Jia Qu1
1Eye Hospital, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China;
2The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
Corresponding author:Jia Qu, Eye Hospital, Eye Hospital, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China (Email: jqu@wz.zj.cn)
Abstract

Objective: We used ultra-high resolution spectral domain optical coherence tomography (UHR-OCT) to analyze the subclinical changes in retinal neurons, axon injury, and retinal thickness in neuromyelitis optica spectrum disorders (NMOSD) patients.Methods: This case-control study included 21 cases of NMOSD patients and 20 matched healthy volunteers (control group). The NMOSD patients were divided into a subgroup without optic neuritis (NO-ON) (13 eyes) and a subgroup with optic neuritis (ON) group (13 eyes). The thickness of the total retina of each patient and control subject was evaluated by using UHR-OCT. Data of each layer were analyzed using one-way ANOVA.Results: Except at the central region, the total retinal thickness of the ON group in whole mapping images was significantly thinner than the control group and NO-ON group. There were significant differences in total thickness between the NO-ON group and the control group in some regions (nasal interior [NI], P=0.011; temporal interior[TI], P=0.003; superior exterior [SE], P=0.019; inferior exterior [IE], P=0.002). The thicknesses of the retinal nerve fiber layer (RNFL) and the combined ganglion cell layer and inner plexiform layer (GCL+IPL) in the ON group was significantly thinner in each quadrant compared with the control group ( P < 0.001). The RNFL thickness of the NO-ON group was thinner in the nasal and temporal areas compared with the control group (NI, P=0.049; TI and temporal exterior [TE], P < 0.001). The GCL+IPL thickness in the NO-ON group was thinner than control group (SE, P < 0.001; IE, P=0.002). The thickness of inner nuclear layer (INL) in the ON group was thicker than in the control group (superior interior [SI], P=0.001; inferior interior [II], P=0.003; TE, P=0.043); however the thickness of the INL in the NO-ON group was thinner than in the control group (SE, P=0.015; IE, P=0.012). The thickness of Henle fiber layer and outer nuclear layer (HFL+ONL) in the NO-ON group was thinner than for the control group (SI, P=0.009; SE, P=0.018; II, P=0.001; IE, P=0.001 ), but there were no significant differences between the ON group and the control group.Conclusions: There were significant changes in the different retinal layers of NMOSD patients compared to healthy controls. The thicknesses of RNFL and GCIPL in the NO-ON subgroup were decreased, suggesting that NMOSD patients with no optic neuritis potentially have structural damage in the retinal nerve.

Keyword: neuromyelitis optica spectrum disorders; optical coherence tomography; neuro damage; aquaporin-4

视神经脊髓炎谱系疾病(Neuromyelitis optica spectrum disorders, NMOSD), 是一种中枢神经系统的特发性免疫性疾病, 可引起严重的脱髓鞘病变, 是视神经炎和脊髓炎同时或相继受累的疾病。2004 年, 视神经脊髓炎特异抗体— — AQP-4抗体确定为视神经脊髓炎的特异抗体, 该疾病诊断的准确性也随之提高[1]。目前, AQP-4抗体检测已成为高风险NMOSD患者诊断的重要手段, Wingerchuk等[2]将视神经脊髓炎和AQP4抗体阳性的疾病统称为NMOSD。

NMOSD会导致严重的视力损伤, 其机制可能是由于视神经炎引起的视神经和视网膜神经组织损伤。近年来, 很多学者认为视网膜作为中枢神经系统重要的组成部分, 可以预测大脑病理改变[3, 4]。有研究发现视觉通路可能存在亚临床改变[5]。目前由于研究技术的限制, NMOSD中的AQP-4抗体阳性脊髓炎的视网膜神经结构研究较少, 仅针对视网膜神经纤维层(Retinal nerve fiber layer, RNFL)及黄斑部神经节细胞复合体(Ganglion cell complex, GCC)厚度[6, 7], 显示了神经纤维及神经元损伤情况。光学相干断层扫描技术(OCT)是近年来发展迅速的一种眼科新型设备, 可以快速、无创获得分辨率高达3 μ m的视网膜断层图像, 进而可以分析视网膜各层结构, 建立视网膜三维立体成像模型, 对眼科相关疾病的监测起到重要作用[8, 9]。利用OCT技术对视网膜全层成像, 可以更全面地了解和探究NMOSD的发病机制和特点。本研究通过对AQP-4抗体阳性的NMOSD患者视网膜进行高分辨谱域OCT(High resolution spectral domin optical coherence tomography, UHR-OCT)检查, 分析NMOSD视网膜神经纤维和轴突损伤、视网膜厚度的亚临床变化, 为疾病进展的监测及治疗提供参考。

1 对象与方法
1.1 对象

收集2016年3月至2017年1月在温州医科大学附属第二医院神经内科诊治的21位NMOSD患者。纳入标准:①符合2015年国际共识[2]的诊断标准, AQP4抗体阳性且至少存在1项核心临床表现(视神经炎、急性脊髓炎等); ②球镜度:-3.0~+2.0 D; ③固视良好:最佳矫正视力(BCVA)> 0.05(Snellen分数)。排除标准:①患有青光眼、视网膜病变及影响视神经的视路疾病; ②患有高血压、糖尿病等全身系统疾病; ③患有影响检查的严重屈光介质混浊疾病, 如白内障; ④球镜度< -3.0 D或> +2.0 D。根据患者既往临床表现和影像学检查, 双眼视神经炎(Optic neuromyelitis, ON)者随机取其中一眼, 单眼ON者取患眼一并纳入ON组(13眼); 单眼ON者的对侧眼和无ON的NMOSD患者随机眼纳入非视神经炎组(NO-ON, 13眼)。所有患者经详细的病史采集(包括一般信息、病程、视神经炎发作次数)后, 进行系统的基本眼科检查, 包括:最佳矫正视力(BCVA)、眼压(非接触式眼压)、眼轴(IOLMaster, 德国Carl Zeiss公司)、裂隙灯显微镜、眼底及UHR-OCT检查(UHR-OCT检查均在急性ON发作后6个月测量)。同时招募年龄相匹配的20例健康志愿者作为健康对照组, 排除眼科、神经科疾病以及其他全身性疾病(高血压、糖尿病等), 矫正视力≥ 1.0, 球镜度为-3.0~+2.0 D。本研究通过温州医科大学附属眼视光医院伦理委员会审批(批号:KYK[2017]6号), 所有参与者签署知情同意书。

1.2 研究方法

1.2.1 OCT检查 采用实验室自行搭建的UHR-OCT, 结合自行开发的自动分割算法测量以黄斑中心凹为中心的6 mm扫描范围黄斑区8层视网膜结构。该仪器的光源为超辐射二极管(SLD:T840, SuperLum Diodes Ltd.), 中心波长840 nm, 带宽100 nm, 最高分辨率达3 μ m。入射光进入眼睛的能量(功率)设置为750 μ W, 远低于美国国家标准协会(ANSI z136.1-2000)的安全标准, 该仪器及相关软件在健康眼有较好的重复性和再现性[10], 并已成功应用于高度近视患者[11]。运用放射状扫描方式(Radial-line OCT scans)得到以黄斑为中心的6 mm扫描范围的视网膜断层图像。健康对照和典型的视神经脊髓炎视网膜图像示意图见图1。

图1. 健康对照和典型的视神经脊髓炎视网膜高分辨率谱系OCT(UHR-OCT)图像示意图
A:健康对照者视网膜黄斑区6 mm范围放射状扫描模式图; B:健康对照者黄斑区内层视网膜至外层视网膜的9条边界示意图; C:视神经脊髓炎谱系疾病(NMOSD)患者视网膜黄斑区9分区模式图; D:NMOSD患者视网膜UHR-OCT图像
Figure 1. UHR-OCT images of the retina from a representative healthy control and a NMOSD patient.
A: Radial scan of twelve lines in the 6-mm radius range of the macula in a representative healthy control. B: Nine boundaries of the intra-retinal structures from inner to outer retina in a representative healthy control. IZ+RPE, interdigitation zone and retinal pigment epithelium. RNFL, retinal nerve fiber layer; GCL+IPL, ganglion cell layer and inner plexiform layer; INL, inner nuclear layer; MEZ, myoid and ellipsoid zone; OS, outer segment of photoreceptors; OPL, outer plexiform layer; HFL+ONL, Henle fiber layer and outer nuclear layer. C: Nine regions divided on the three concentric rings. The inner concentric ring (parafovea) ranged from 1 to 3 mm from the central fovea (C) and consisted of the following regions: SI, superior interior; II, inferior interior; NI, nasal interior; and TI, temporal interior. The outer concentric ring (perifovea) ranged from 3 to 6 mm from C and consisted of the following regions: SE, superior exterior; IE, inferior exterior; NE, nasal exterior; TE, temporal exterior. D: UHR-OCT images of a NMOSD patient with optic neuritis. UHR-OCT, ultra-high resolution optical coherence tomography; NMOSD, neuromyelitis optica spectrum disorder.

1.2.2 图像处理 运用Matlab(2015b, The Mathworks Inc.)开发的最短路径法图像处理软件, 可全自动探测视网膜9层界面并分析图像获得8层视网膜厚度数据[11, 12]。将UHR-OCT拍摄十字扫描的6 mm黄斑区视网膜图像进行眼轴矫正, 然后分析中央6 mm黄斑区视网膜, 得到的边界包括:①内界膜; ②视网膜神经纤维层/神经节细胞层(Retinal nerve fiber layer/ganglion cell layer, RNFL/GCL); ③内丛状层/内核层(Inner plexiform layer/inner nuclear layer. IPL/INL); ④内核层/外丛状层(Inner nuclear layer/outer plexiform layer, INL/OPL); ⑤外丛状层/Henle纤维层+外核层(Outer plexiform layer/henle fiber layer and outer nuclear layer, OPL/HFL+ONL); ⑥外界膜; ⑦肌样椭圆体区/光感受器外节(Myoid and ellipsoid zone/outer segment of photoreceptors, MEZ/OS); ⑧光感受器外节段/交错区+色素细胞层(Outer segment of photoreceptors/interdigitation zone and retinal pigment epithelium, OS/IZ+RPE); ⑨交错区+色素细胞层/脉络膜(Interdigitation zone and retinal pigment epithelium/choroid, IZ+RPE/choroid)。对软件自动探测的边界进行厚度分析, 获得RNFL、GCL+IPL、INL、OPL、HFL+ONL、MEZ、OS、IZ+RPE 8层视网膜厚度分布情况。通过软件分析得到视网膜3D厚度信息。视网膜厚度地形图以黄斑为中心的6 mm扫描范围分为9个区域:黄斑区(Central fovea, C), 上侧内环(Superior interior, SI), 上侧外环(Superior exterior, SE), 下侧内环(Inferior interior, II), 下侧外环(Inferior exterior, IE), 鼻侧内环(Nasal interior, NI), 鼻侧外环(Nasal exterior, NE), 颞侧外环(Temporal interior, TI), 颞侧内环(Temporal exterior, TE)。见图1。

1.3 统计学方法

病例对照研究。所有数据均采用SPSS 20.0统计软件进行统计分析。3组对象的年龄、眼轴、眼压、BCVA、等效球镜度、视网膜各层厚度的比较采用单因素方差分析, 两两比较采用LSD检验。以P < 0.05为差异有统计学意义。

2 结果
2.1 一般资料

各组的性别构成、年龄、眼压、眼轴差异均无统计学意义。ON组BCVA均较健康对照组和NO-ON组差, 且差异具有统计学意义(F=57.56, P < 0.001), 健康对照组和NO-ON组之间差异无统计学意义(P > 0.05)。见表1

表1 健康对照组、非视神经炎组和视神经炎组的临床基本资料 Table 1 General information between control, NO-ON and ON group
2.2 各组视网膜厚度分析

NO-ON组视网膜总厚度较健康对照组薄, 主要在NI(P=0.011)和TI(P=0.003)以及SE(P =0.019)和IE(P=0.002)差异有统计学意义。ON组在总厚度上较NO-ON组薄, 除中央区外其余区域差异均有统计学意义(SI、NI、II、TI、SE、NE:P < 0.001; IE:P=0.001; TE:P=0.005)。ON组的RNFL和GCL+IPL厚度较健康对照组和NO-ON组薄。ON组的RNFL厚度与健康对照组相比差异具有统计学意义(C:P=0.041; SI、NI、II、TI、SE、NE、IE、TE:P < 0.001)。在GCL+IPL, ON组与健康对照组相比差异具有统计学意义(C:P=0.032; SI、NI、II、TI、SE、NE、IE、TE:P < 0.001)。NO-ON组的RNFL厚度较健康对照组薄, 但仅在NI(P=0.049)、TI和TE(均P=0.01)区域2组间差异具有统计学意义。NO-ON组GCL+IPL较健康对照组在SE和IE厚度均降低(均P < 0.01), 在水平方向上差异无统计学意义。除中央区域, ON组的INL厚度较健康对照组有增加趋势, SI(P=0.001)、II(P=0.003)、TE(P=0.043)差异有统计学意义。NO-ON组较对照组在SE(P=0.015)、IE(P=0.012)薄。与健康对照组比较, NO-ON组HFL+ONL厚度均呈明显下降趋势(SI:P=0.009; II、IE:P=0.001; SE:P=0.018), ON组则差异无统计学意义。在OPL、MEZ、IZ+RPE层中, 健康对照组和NO-ON组之间厚度无明显改变。见图2和表2

图2. 健康对照组和非视神经炎组、视神经炎组视网膜各层厚度地形图
第1行:健康对照组; 第2行:非视神经炎组; 第3行:健康对照组与非视神经炎组之间的厚度差异; 第5行:视神经炎组; 第6行:健康对照组与视神经炎组之间的厚度差异; 第9行:视神经炎组与非视神经炎组之间的厚度差异; 蓝色表示厚度降低(P< 0.05), 红色表示厚度增加(P< 0.05)。C, 黄斑区; SI, 上侧内环; SE, 上侧外环; II, 下侧内环; IE, 下侧外环; NI, 鼻侧内环; NE, 鼻侧外环; TI, 颞侧外环; TE, 颞侧内环; RNFL, 视膜网神经纤维层; GCL+IPL, 神经节细胞层+内丛状层; INL, 内核层; OPL, 外丛状层; HFL+ONL, Henle纤维层+外核层; MEZ, 肌样椭圆体区; OS, 光感受器外节; IZ+RPE, 交错区+色素细胞层; Total retina, 总视网膜厚度
Figure 2. Thickness maps of retinal layers in nine sectors for the control group and NO-ON group, ON group.
The thickness for each of the nine macular regions is indicated by the color bar to the right of each map: Row 1, control group; Row 2, NMOSD without optic neuritis (NO-ON); Row 3, thickness difference between the control group and NO-ON group. Row 5: NMOSD with optic neuritis (ON) group; Row 6, thickness difference between the control group and ON group. Row 9: Thickness difference maps between ON group and NO-ON group. Blue indicates significantly thinner layers (P< 0.05) and red indicates significantly thicker layers (P< 0.05) compared to the other group. C, central fovea; SI, superior interior; SE, superior exterior; II, inferior interior; IE, inferior exterior; NI, nasal interior; NE, nasal exterior; TI, temporal interior; TE, temporal exterior; RNFL, retinal nerve fiber layer; GCL+IPL, ganglion cell layer and inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; HFL+ONL, Henle fiber layer and outer nuclear layer; MEZ, myoid and ellipsoid zone; OS, outer segment of photoreceptors; IZ+RPE, interdigitation zone and retinal pigment epithelium. Total retina, total retinal thickness.

表2 健康对照组、非视神经炎组和视神经炎组视网膜各层厚度值比较(μ m) Table 2 Thickness (μ m) changes of retina layers compared between control, NO-ON and ON group
3 讨论

NMOSD是一种严重的中枢神经系统免疫疾病, 因其主要临床症状为视神经炎和脊髓炎, 将引起神经不可逆的损伤, 是中青年常见的致盲致残性疾病[13]。本研究应用高分辨SD-OCT研究AQP4抗体阳性的NMOSD不同组之间的视网膜各层结构变化情况, 发现在NMOSD患者的未受累眼中出现RNFL和GCL+IPL的厚度下降。

本研究中, NO-ON组和ON组的视网膜总厚度较健康对照组有不同程度的下降趋势, 主要是由于RNFL和GCL+IPL厚度的下降引起。ON组RNFL和GCL+IPL厚度较健康对照组薄, 且差异具有统计学意义, 这与之前多数研究结果相似[7, 14]。GCL+IPL是由神经节细胞组成, RNFL的神经纤维由节细胞层的轴突组成并汇聚在视盘, 进而形成视神经, RNFL和GCL+IPL的变薄表明在AQP4抗体阳性NMOSD患者中存在大量神经元缺失[15, 16], 可能是由于继发视神经炎所引起神经结构的丢失。Hokari等[17]及Zeka等[18]研究表明视网膜的损伤不仅是视神经炎退行性改变, 也可能是由于疾病抗体攻击所导致。NO-ON组RNFL的颞侧厚度较健康人群薄, 这种现象可能是因为NMOSD更易影响主要分布在颞侧象限的小直径轴突, 同时也提示视神经炎未受累眼亦会发生亚临床视网膜神经损伤。

INL的增厚被认为是诊断NMOSD的一个潜在标志。Fernandes等[19]研究表明INL厚度在NMOSD患者中增加, 与本研究结果相似, ON组与健康对照组相比, INL厚度较大。这可能是由于AQP4主要在视网膜Mü ller细胞中表达。在NMOSD患者视网膜INL中会出现微囊样黄斑水肿(Microcystic macular edema, MME)现象, 此现象可能是由于内层视网膜血管丛发生渗漏所致[20], 也可能是INL中的Mü ller细胞发生肿胀所致[21], 与视神经损伤无关, 且MME会导致视觉效果不佳及预后较差[22]。因此, 我们认为NMOSD患者INL的增厚可能与抗体攻击Mü ller致损伤有关。同时本研究发现NO-ON患眼与正常人眼相比, HFL+ONL层厚度较薄, 而ON眼与正常人眼HFL+ONL厚度无明显差别, 这与Sotirchos等[23]的研究结果相似, 表明HFL+ONL的变薄可能是亚临床视神经病变, 但是变薄的原因尚需进一步研究。Cheng等[24]描述过NMOSD视网膜外层结构较正常对照人眼薄, 但是在本研究中并未发现类似改变。

本研究仍存在一定的局限性。首先, 该研究为横断面研究, 不能准确描述NMOSD的视网膜不同层次在疾病进展中的厚度改变。其次, 不能明确在未受累眼中视网膜结构的改变是否与疾病的复发和预后有关。同时, 由于NMOSD是一种免疫性疾病, 会引起血管的改变[25, 26], 而本研究中未检测分析NMOSD患者视网膜血管的改变。在后续的研究中, 我们将进一步扩大样本量、增加对患者视网膜血管的检查, 以及对患者的随访, 以进一步探讨OCT在NMOSD诊疗过程中的临床价值。

综上所述, 本研究将AQP4抗体阳性的NMOSD患者通过是否有视神经炎受累进行分组, 发现NMOSD患者在不同层次的视网膜结构中存在改变, RNFL和GCL+IPL在视神经炎未受累眼存在厚度下降, 提示NMOSD患者未受累眼存在潜在的视网膜神经结构损伤, 对疾病进展的监测和治疗提供一定的参考价值。

利益冲突申明 本研究无任何利益冲突

作者贡献声明 彭晨蕾:收集数据, 参与选题、设计及资料的分析和解释; 撰写论文; 根据编辑部的修改意见进行修改。William Robert Kwapong:参与选题、设计及资料的分析和解释。周煜恒:资料的分析和解释。何志勇:参与选题、设计。沈梅晓:参与选题、设计, 修改论文中关键性结果、结论, 根据编辑部的修改意见进行核修。瞿佳:修改论文中关键性结果、结论, 根据编辑部的修改意见进行核修

The authors have declared that no competing interests exist.

参考文献
[1] Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet, 2004, 364(9451): 2106-2112. DOI: 10.1016/S0140-6736(04)17551-X. [本文引用:1]
[2] Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology, 2015, 85(2): 177-189. DOI: 10.1212/WNL.0000000000001729. [本文引用:2]
[3] Barishak YR. Embryology of the eye and its adnexae. Dev Ophthalmol, 1992, 24: 1-142. [本文引用:1]
[4] Hoar RM. Embryology of the eye. Environ Health Perspect, 1982, 44: 31-34. [本文引用:1]
[5] Wang J, Li X, Zhang DQ, et al. Quantitative analysis of aquaporin-4 antibody in longitudinally extensive transverse myelitis. J Neuroimmunol, 2015, 278: 26-29. DOI: 10.1016/j.jneuroim.2014.12.006. [本文引用:1]
[6] Schneider E, Zimmermann H, Oberwahrenbrock T, et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One, 2013, 8(6): e66151. DOI: 10.1371/journal.pone.0066151. [本文引用:1]
[7] Bennett JL, de Seze J, Lana-Peixoto M, et al. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler, 2015, 21(6): 678-688. DOI: 10.1177/1352458514567216. [本文引用:2]
[8] Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2008, 146(4): 496-500. DOI: 10.1016/j.ajo.2008.05.032. [本文引用:1]
[9] Chen Q, Huang S, Ma Q, et al. Ultra-high resolution profiles of macular intraretinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci Rep, 2017, 7: 41100. DOI: 10.1038/srep41100. [本文引用:1]
[10] Liu X, Shen M, Huang S, et al. Repeatability and reproducibility of eight macular intraretinal layer thicknesses determined by an automated segmentation algorithm using two SD-OCT instruments. PLoS One, 2014, 9(2): e87996. DOI: 10.1371/journal.pone.0087996. [本文引用:1]
[11] Liu X, Shen M, Yuan Y, et al. Macular thickness profiles of intraretinal layers in myopia evaluated by ultrahigh-resolution optical coherence tomography. Am J Ophthalmol, 2015, 160(1): 53-61 e52. DOI: 10.1016/j.ajo.2015.03.012. [本文引用:2]
[12] Staurenghi G, Sadda S, Chakravarthy U, et al. Proposed lexicon for anatomic land marks in normal posterior segment spectral-domain optical coherence tomography: the INOCT consensus. Ophthalmology, 2014, 121(8): 1572-1578. DOI: 10.1016/j.ophtha.2014.02.023. [本文引用:1]
[13] Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol, 2007, 6(9): 805-815. DOI: 10.1016/S1474-4422(07)70216-8. [本文引用:1]
[14] Martinez-Lapiscina EH, Sepulveda M, Torres-Torres R, et al. Usefulness of optical coherence tomography to distinguish optic neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders. Ther Adv Neurol Disord, 2016, 9(5): 436-440. DOI: 10.1177/1756285616655264. [本文引用:1]
[15] Syc SB, Saidha S, Newsome SD, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain, 2012, 135(Pt 2): 521-533. DOI: 10.1093/brain/awr264. [本文引用:1]
[16] Monteiro ML, Fernand es DB, Apostolos-Pereira SL, et al. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2012, 53(7): 3959-3966. DOI: 10.1167/iovs.11-9324. [本文引用:1]
[17] Hokari M, Yokoseki A, Arakawa M, et al. Clinicopathological features in anterior visual pathway in neuromyelitis optica. Ann Neurol, 2016, 79(4): 605-624. DOI: 10.1002/ana.24608. [本文引用:1]
[18] Zeka B, Hastermann M, Kaufmann N, et al. Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathol Commun, 2016, 4(1): 82. DOI: 10.1186/s40478-016-0355-y. [本文引用:1]
[19] Fernand es DB, Raza AS, Nogueira RG, et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology, 2013, 120(2): 387-394. DOI: 10.1016/j.ophtha.2012.07.066. [本文引用:1]
[20] Antcliff RJ, Hussain AA, Marshall J. Hydraulic conductivity of fixed retinal tissue after sequential excimer laser ablation: Barriers limiting fluid distribution and implications for cystoid macular edema. Arch Ophthalmol, 2001, 119(4): 539-544. [本文引用:1]
[21] Bringmann A, Reichenbach A, Wiedemann P. Pathomechanisms of cystoid macular edema. Ophthalmic Res, 2004, 36(5): 241-249. DOI: 10.1159/000081203. [本文引用:1]
[22] Gelfand JM, Cree BA, Nolan R, et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol, 2013, 70(5): 629-633. DOI: 10.1001/jamaneurol.2013.1832. [本文引用:1]
[23] Sotirchos ES, Seigo MA, Calabresi PA, et al. Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis. Curr Eye Res, 2013, 38(1): 224-228. DOI: 10.3109/02713683.2012.722243. [本文引用:1]
[24] Cheng L, Wang J, He X, et al. Macular changes of neuromyelitis optica through spectral-domain optical coherence tomography. Int J Ophthalmol, 2016, 9(11): 1638-1645. DOI: 10.18240/ijo.2016.11.17. [本文引用:1]
[25] Green AJ, Cree BA. Distinctive retinal nerve fibre layer and vascular changes in neuromyelitis optica following optic neuritis. J Neurol Neurosurg Psychiatry, 2009, 80(9): 1002-1005. DOI: 10.1136/jnnp.2008.166207. [本文引用:1]
[26] Lefkowitz D, Angelo JN. Neuromyelitis optica with unusual vascular changes. Arch Neurol, 1984, 41(10): 1103-1105. [本文引用:1]