组蛋白去乙酰化酶抑制剂在眼科疾病中应用的研究进展
林永, 李丽, 瞿佳
温州医科大学附属眼视光医院 325027
通信作者:瞿佳(ORCID:0000-0003-1678-966X),Email:jqu@wzmc.net

第一作者:林永(ORCID:0000-0002-4994-9669),Email:lin2002134107@163.com

摘要

组蛋白乙酰化是真核生物中重要的翻译后修饰之一,参与染色质结构的重塑。这个过程由组蛋白乙酰化酶(HATs)和组蛋白去乙酰化酶(HDACs)催化完成。HDACs抑制剂是一类以组蛋白去乙酰化酶为靶点的药物,对细胞的增殖、分化、凋亡、迁移等方面有重要的影响,目前已被应用于临床肿瘤治疗中。HDACs广泛存在于眼球各组织中,在眼科疾病的发生发展中发挥着重要的作用。现就HDACs抑制剂在眼科疾病的研究进展作一综述,旨在为眼科疾病临床治疗提供新的策略和思路。

关键词: 表观遗传; 乙酰化; 去乙酰化; 组蛋白去乙酰化酶抑制剂; 眼科疾病
Advances in the Application of Histone Deacetylase Inhibitors in Eye Disease
Yong Lin, Li Li, Jia Qu
Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
Corresponding author:Jia Qu, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China (Email: jqu@wzmc.net)
Abstract

Histone acetylation is an important modification of proteins in cell biology, occurring as a post-translational modification (PTM). It participates in chromosome remodeling, which is maintained by histone acetyltransferase (HATs) and histone deacetylase (HDACs). HDAC inhibitors (HDACis) act specifically against several types of HDACs, causing increased acetylation of histone and non-histone proteins. HDACis induce cell cycle arrest, differentiation, apoptosis and migration. Several HDACis have been approved for clinical trials to treat cancer. HDACs have been detected extensively in eye tissue, indicating they have important roles in the occurrence and development of eye diseases. In this review, we summarize current knowledge concerning the roles of HDACis in eye diseases, aiming to make their applications possible in the clinical treatment of eye diseases in the future.

Keyword: epigenitics; acetylation; deacetylation; histone deacetylase inhibitors; eye disease

眼科疾病是一个涉及面广, 患者人数多, 严重影响患者生活质量的疾病, 眼科疾病的研究正逐渐成为科学研究领域的热点和重点。眼科疾病不仅受遗传因素影响, 也受外部环境因素影响, 故表观遗传在眼科疾病的发生发展中越来越受到大家的关注。表观遗传学是指在基因DNA序列不发生改变的情况下, 基因表达却发生了可遗传的改变, 这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变, 最终导致表型的改变[1]。表观遗传包括DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA[2, 3], 其中组蛋白乙酰化是表观遗传中研究最早的翻译后修饰。

1 组蛋白去乙酰化酶的生物学功能和分类

核小体是染色质的基本单位, 由核心蛋白(组蛋白H1、H2A、H2B、H3和H4)及147bp DNA组成[4]。蛋白质的乙酰化修饰在真核生物中普遍存在, 其中组蛋白赖氨酸的乙酰化是非常重要的转录后修饰, 由组蛋白乙酰化酶(Histone acetyltransferase, HATs)和组蛋白去乙酰化酶(Histone deacetylases, HDACs)共同调节。前者将乙酰辅酶A的乙酰基团转移至组蛋白氨基末端中特定的赖氨酸残基上, 使得染色质空间结构处于疏松状态, 核小体DNA更易于接近转录因子, 促进转录; 后者通过组蛋白N端的去乙酰化, 使染色质呈致密卷曲结构, 核小体DNA不易于接近转录因子, 抑制转录的发生[5, 6]。HDAC不仅能去乙酰化组蛋白, 也能去乙酰化非组蛋白, 如转录因子E2F1、MyoD、GATA-1和P53, 以及胞质内微管蛋白Tubulin和热休克蛋白90(Heat Shock Protein 90, HSP90), 促进或者抑制其转录活性[7, 8]。HATs和HDACs协同调节蛋白质乙酰化的动态平衡, 在细胞的增殖、凋亡、分化、血管新生、神经保护、抗炎、癌症治疗等方面都发挥着重要的作用[9, 10]。去乙酰化酶在许多物种中都是高度保守的, 目前在人类中已经发现了18种HDACs, 根据其和酵母中去乙酰化酶同源性分为4类[11, 12, 13, 14], 见表1。其中Ⅰ 、Ⅱ 、Ⅳ 类HDACs是Zn2+依赖的, 而Ⅲ 类HDACs是烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, NAD)依赖的。

表1 HDACs的分类 Table 1 Classification of histone deacetylases (HDACs)
2 HDAC抑制剂的生物学功能及分类

HDAC抑制剂(HDAC inhibitors, HDACis)靶向作用于HDAC, 干扰HDAC的活性, 使组蛋白处于高乙酰化状态, 促进或抑制基因的转录。越来越多的证据表明HDACis对细胞的基因表达、DNA修复、细胞凋亡、细胞周期调控、细胞分化、迁移和血管生成等功能有特异性的作用。另外HDACis还有免疫调节功能, 诱导增殖期和非增殖期的肿瘤细胞死亡[15]。HDACis的作用机制很复杂, 目前尚未完全清楚。HDACis的结构可分为酶结合区(金属结合区)、酶抑制区(表面识别区)以及连接这两部分的脂肪链。酶结合区主要由疏水基团构成, 酶抑制区的功能基团(羟肟酸、环氧酮基、巯基等)则是抑制活性所必需的。第Ⅰ 类和第Ⅱ 类HDAC的抑制剂具有与乙酰化赖氨酸残基侧链相似或相同的化学结构, 通过功能基团能与HDAC的Zn2+形成螯合物, 竞争性抑制HDAC的活性。根据化学结构的不同, HDACis可以分为4类[15, 16], 见表2

表2 HDACis的分类 Table 2 Classification of histone deacetylase inhibitors (HDACis)
3 HDACis在眼科疾病中的相关研究
3.1 HDACis和角膜疾病

角膜透明性是维持正常屈光特性的生理基础, 手术、外伤、感染等会诱发角膜异常损伤修复反应, 引起角膜上皮下雾状混浊和瘢痕形成, 最终破坏角膜的透明性和屈光性, 影响视觉功能。角膜基质成纤维细胞转分化为肌成纤维细胞在角膜损伤修复中是非常关键的一步[17], 损伤的角膜上皮细胞分泌转化生长因子-β (Transforming growth factor-β , TGF-β ), 使上皮细胞转分化为间充质细胞[18]。在角膜正常的修复过程中, 肌成纤维细胞发生凋亡, 但是在一些病理条件下肌成纤维细胞积聚, 分泌过多的不规则的细胞外基质导致角膜损伤修复异常, 从而使角膜发生纤维变性, 临床上表现为角膜混浊, 严重的会导致失明。Zhou等[19]用曲古抑菌素(Trichostin, TSA)和丁酸钠(Sodium butyrate, NaB)处理人角膜基质细胞, 发现其能抑制细胞的分化、增殖、迁移。Wang等[20]用表皮生长因子(Epidermal growth factor, EGF)诱导角膜上皮细胞发现HDAC6激活, 用RNA干扰(RNA interfering, RNAi)技术下调HDAC6表达或者给予HDACis TSA处理细胞后, EGF诱导的角膜细胞迁移能力明显减弱。Sharma等[21, 22]用TSA处理人角膜成纤维细胞(Human corneal fibroblasts, HCFs)能减少TGF-β 引起的α -平滑肌肌动蛋白(α -smooth muscle actin, α -SMA)、纤维连接蛋白(Fibronectin, FN)的表达, 进一步用TSA处理角膜混浊的兔子能明显减少角膜的混浊。Sharma用另外一种HDACi SAHA处理HCFs, TGF-β 表达下调, 细胞纤维化标记α -SMA减少。与Sharma等[21, 22]相似, Donnelly等[23]用SAHA处理TGF-β 诱导的HCFs, 发现金属基质蛋白(Matrix metalloproteinase-2, MMP-2)、MMP-9表达下调, 角膜成纤维细胞向肌成纤维细胞的转分化减少, 有利于角膜的修复。Tandon等[24]也用SAHA处理准分子激光角膜切削术(Photorefractive keratectomy, PRK)诱导的角膜混浊的兔子, 角膜混浊得到了明显的改善。Lim等[25]用最新一代的HDACi ITF2357处理TGF-β 诱导的人角膜基质成纤维细胞(Human corneal stromal fibrobla, HCSF), TGF-β 通路受到抑制, 细胞外基质蛋白合成减少, 用ITF2357处理PRK引起的角膜混浊的兔子, 角膜混浊得到改善。以上研究提示了HDACis可以作为角膜异常损伤修复引起的角膜混浊相关疾病的潜在治疗药物。

3.2 HDACi和白内障

年龄相关性白内障(Age-related cataract, ARD)是世界致盲性眼病之一, 目前主要治疗手段是手术治疗, 但是由于术后会发生晶状体后囊膜上皮细胞过度增殖, 肌成纤维细胞形成, 细胞基质蛋白降解和牵拉最终导致后发性白内障(Posterior capsule opacification, PCO)发生[26]。PCO中上皮细胞向间充质细胞转换(Epithelial-to-mesenchymal transition, EMT), α -SMA及其他上皮细胞转分化过程中细胞骨架蛋白高表达[27], 用TGF-β 处理晶状体上皮细胞可以诱导PCO中的EMT[28]。ARD的主要病理原因是氧化应激, 晶状体中主要的抗氧化酶是过氧化物歧化酶1(Superoxide dismutase 1, SOD1)[27]。Rong等[29]发现ARD晶状体中SOD1表达明显下降, 其启动子区域600 bp的位置上H3和H4低乙酰化, 推测SOD1启动子区的组蛋白去乙酰化和ARD的发生相关, 用腰果酸(Anacardic acid, AA) (一种组蛋白乙酰化抑制剂)处理兔子晶状体, 抑制了H3和H4乙酰化, 晶状体变混浊, 而给予AA+TSA能使晶状体保持透明。Chen 等[30]在TGF-β 2诱导的人晶状体上皮细胞(Lens epithelial cells, HLECs)EMT中发现Ⅰ 、Ⅱ 类HDAC表达升高, 用Ⅰ 、Ⅱ 类HDAC抑制剂TSA处理HLECs发现P21、P27蛋白升高, 抑制细胞的增殖, 同时EMT相关蛋白表达都下降。Xie等[31]用HDACi TSA和SAHA处理HLECs后, 细胞中HDAC-1、4、5表达减少, 同时抑制了TGF-β 2引起的细胞EMT。以上研究表明HDACi可以预防白内障术后引起的PCO。

3.3 HDACi和青光眼

青光眼是指眼内压间断或持续升高的一种眼病, 持续的高眼压会给眼球各部分组织和视功能带来损害, 如不及时治疗, 视野可能全部丧失而至失明。在原发性开角型青光眼患者的玻璃体和小梁网中TGF-β 2表达升高[32], 升高的TGF-β 2会激活TGF通路促进细胞外基质的产生, 细胞骨架的改变[33]。随着表观遗传学研究的进展, 目前越来越多的证据表明表观遗传因素在青光眼致病机制中发挥着重要的作用。青光眼患者小梁网组织中HDAC-3升高, 但蛋白处于高乙酰化状态, 用HDACi处理正常小梁网细胞发现在TGF-β 2启动子区高乙酰化, 引起TGF-β 2 mRNA和蛋白水平都升高, 进而增加细胞外基质和细胞骨架蛋白表达[34]。视神经损伤是青光眼重要的并发症, 而视神经损伤会引起视网膜神经节细胞(Retinal ganglion cell, RGC)的凋亡。Schwechter等[35]用TSA处理RGC-5可以促进细胞分化和神经突触生成, 最终促进RGC的生存。RGC细胞核萎缩是细胞凋亡的早期表现, 在视神经损伤的RGC中HDAC活性升高, 其中HDAC-3对神经有特异性的毒性。在青光眼小鼠皮下注射VPA 2周后, RGC的凋亡减少, 抑制视网膜内核层变薄, 并通过胞外信号调节激酶(Extracellular signal-regulated kinase, ERK)信号通路促进RGC的存活[36]。同样, Biermann等[37, 38]在青光眼大鼠模型中采用VPA连续8 d皮下注射或玻璃体腔给药有神经保护作用, 并减少RGC的凋亡; 用VPA和NaB协同处理原代分离的大鼠RGC后组蛋白处于高乙酰化状态, 减少RGC凋亡。其他研究报道中发现HDACi TSA也有同样的神经保护和减少RGC凋亡的作用[39]。Schmitt等[40]在小鼠神经节细胞中敲除HDAC-3, 可以改善视神经损伤引起的细胞核萎缩的特征, 如H4去乙酰化、异染色质形成和细胞核形态的丢失等。在视神经损伤的小鼠中P53-PUMA凋亡通路被激活, 在RGC中特异性敲除HDAC-1和HDAC-2, P53处于高乙酰化状态, 抑制PUMA表达, 减少神经元细胞凋亡, 起到神经保护作用[41]。有研究者在视神经损伤小鼠中给予Ⅰ 类HDAC抑制剂MS-275治疗, 发现可以减少RGC的凋亡和分化[42, 43]。综上所述, HDACi可以抑制RGC5凋亡, 有神经保护作用, 在青光眼后期的视神经损伤中有一定的治疗作用。

3.4 HDACi和糖尿病视网膜病变

糖尿病视网膜病变(Diabetic retinopathy, DR)是糖尿病患者中常见的微血管并发症, 2型糖尿病病程大于10年的患者中50%以上会出现DR, 是发达国家中致盲的主要眼病[44]。广泛缺血引起视网膜或视盘新生血管、视网膜前出血及牵拉性视网膜脱离, 最终会导致视力障碍。视网膜色素上皮细胞(RPE)的紧密连接和视网膜血管内皮细胞之间的紧密连接构成了血视网膜屏障(Blood retinal barrier, BRB), 在DR晚期糖基化终末产物(Advanced glycation end products, AGEs)和血管内皮生长因子(Vascular endothelial growth factor, VEGF)表达增高, AGEs和VEGF靶向RPE, 同时增加血管通透性, 破坏BRB屏障, 导致视网膜中的积液不被吸收, 最终导致糖尿病黄斑水肿[45, 46]。Desjardins等[47]用AGEs激动剂和VEGF处理RPE细胞后HDAC活性增加; 故其在链脲佐菌素(Streptozocin, STZ)诱导的糖尿病大鼠体内注射HDACi TSA, 发现RPE对视网膜积液的吸收增加, 改善黄斑水肿现象。Zhong和Kowluru[48]发现STZ诱导的糖尿病大鼠视网膜中HDAC-1、2、8表达增加, 乙酰化酶活性减弱, H3乙酰化水平降低, 从高糖向正常血糖的转变仍不能改变组蛋白乙酰化水平, 表明乙酰化水平的改变与DR代谢记忆现象相关。与上述2项研究不同的是, Kadiyala等[49]发现DR大鼠视网膜中组蛋白乙酰化增加, 给予HAT抑制剂或者HDAC激动剂可以下调高糖引起的炎症相关蛋白。Xie等[50]用TSA处理高糖或白细胞介素-1β (Iterleukin-1β , IL-1β )诱导的人视网膜血管内皮细胞(Human retinal endothelial cells, HRECs)可以减少VEGF表达, 促进抑血管生成因子色素上皮衍生因子(Pigment epithelium derived factor, PEDF)表达, 最终改善视网膜状况, 提示TSA治疗DR的可能。Kim等[51]用新型的HDACi HNHA[N-hydroxy-7-(2-naphthalenylthio)-heptanamide]治疗氧诱导的视网膜新生血管模型小鼠和激光诱导的脉络膜新生血管模型小鼠, 结果能明显减少视网膜和脉络膜新生血管, 提示HDACi能改善眼底和脉络膜新生血管性疾病的可能。

3.5 HDACi和视网膜色素变性

视网膜色素变性(Retinitis pigmentosa, RP)是一种进行性光感受器细胞丢失和视觉障碍为特征的遗传性视网膜病变, 临床上主要表现为慢性进行性视野缺失、夜盲、色素性视网膜病变和光感受器功能不良。在RP中光感受器进行性死亡, 首先是视杆细胞变性退化, 接着视锥细胞也会发生退化[52]。4%~8%RP患者中PED6基因[一种水解环磷酸鸟苷(Cyclic guanosine monophosphate, cGMP)的酶]突变使cGMP积聚, 聚腺苷二磷酸-核糖聚合酶(poly-ADP-ribose-polymeras, PARP)表达升高[53, 54]。PARP是DNA损伤修复的一个重要调节因子, 对RP中光感受器的退化十分重要[55]。Sancho-Pelluz等[56]在rd1小鼠(PED6基因突变的RP小鼠模型)中发现退化的光感受器细胞中组蛋白乙酰化程度降低, Ⅰ 、Ⅱ 类HDAC过度激活; 用HDACi处理体外培养的rd1小鼠视网膜, 可以降低PARP的活性, 抑制光感受器细胞的变性。而有研究表明HDAC-4的过度表达能延长rd1小鼠光感受器细胞的存活时间[57, 58], 表明HDAC-4激活对光感受器细胞有保护作用, 提示HDACs家族成员在RP发病机制中有不同的作用。Mitton等[59]给予rd1小鼠口服VPA发现HDACi减慢了光感受器的丢失, 改善了RP的临床表现, 也有一些临床试验研究结果显示RP患者口服HDACi VPA 4~6个月后视力和视野有明显的改善, 但是对于长期效果还未知[60, 61, 62]

3.6 HDACi和眼科肿瘤

HDACi在肿瘤的治疗已经部分应用于临床, 许多研究已经证明HDACis对胰腺癌[63]、卵巢癌[64]、结肠癌[65]、前列腺癌[66]和甲状腺癌[67]等多种癌症的治疗均有效果。脉络膜黑色素瘤(Uveal melanoma, UM)是成年人中最常见的眼内恶性肿瘤。UM是一种高度恶性肿瘤, 严重威胁着患者的视力和生命。乳腺癌相关蛋白1(BRCA associated protein1, BAP1)是肿瘤抑制因子, 85%的2级UM患者缺失这个基因, 但是在1级UM患者中这个基因一般不会缺失[68]。UM中BAP1的缺失会使细胞处于去分化、干细胞样状态, 更具迁移侵袭能力[69]。随着对表观遗传学认识的不断深入, 研究者们发现组蛋白乙酰化在UM中发挥着重要的作用。Landreville等[69]用多种HDACi(VPA、TSA、SAHA)处理UM细胞和原代UM细胞, 逆转了BAP1缺失的影响, 使肿瘤细胞停滞在G1期, 抑制细胞的增殖和迁移, 提示HDACi在2级UM患者治疗的可能性。Klisovic等[70]用TSA处理UM细胞, 发现细胞凋亡相关蛋白CASPASE-3、Fas/FasL、P21、P27增加, 从而促进肿瘤细胞的凋亡。Munoz-Erazo等[71]用VPA处理结膜黑色素瘤细胞后发现细胞周期相关蛋白CCND2、CCNA1表达下调从而抑制肿瘤细胞的增殖。

Ⅰ 类特异性HDACi MS-275可以协同肿瘤坏死因子相关凋亡诱导配体(TNF related apoptosis inducing ligand, TRAIL) (TRAIL可以特异性杀死恶性肿瘤细胞)引起肿瘤细胞凋亡[72]。基于以上的研究, 靶向BAP1的HDACi伏立诺他(Vorinostat)、罗米地辛(Romidepsin)已经被应用在临床试验中[73]

视网膜母细胞瘤(Retinoblastoma, RB)是一种源于光感受器前体细胞的恶性肿瘤, 常见于3岁以下儿童, 具有家族遗传倾向, 可单眼、双眼先后或同时罹患。目前RB的治疗主要有手术摘除、激光治疗、冷疗治疗、放射治疗、化学药物治疗等, 其中化学药物治疗主要使用的是顺铂、长春新碱、替尼泊苷等, 其疗效不佳, 并且全身不良反应大[74], 因此寻求一种安全可靠的新药对RB的治疗十分重要。RB的发生和RB1基因的失活有关, RB蛋白能够募集HDAC从而抑制细胞的增殖[75, 76], Dalgard等[77]用HDACi TSA和
MS-275处理RB细胞, 发现细胞凋亡增加, 该结果与反应性氧类物质(Reactive oxygen species, ROS)相关蛋白升高相关, 并且在体内腹腔注射TSA能抑制眼内RB的生长, 将HDACi与依托泊苷、长春新碱协同使用更显著抑制RB的生长。Poulaki等[78]用SAHA处理RB细胞, P53表达升高, 凋亡相关蛋白CASPASE-3、-8、-9激活, NF-κ B活性下调使细胞周期阻滞, 凋亡增加。综上所述HDACi对治疗RB存在着潜在的可能性。

4 总结

目前, 与表观遗传学相关的治疗作用研究正方兴未艾, 许多新的药物和新的发现不断地产生, 新的治疗机制也在不断地被发现。表观遗传调控密切影响着人们的健康, HDACi在基因的表达、细胞增殖、迁移、凋亡等诸多生物学方面都发挥着特异性的作用, 临床早期临床研究显示HDACi在治疗一些肿瘤中可以与多种化学和生化治疗药物产生协同作用。然而HDACi在眼科疾病的研究还处于初期阶段, 且缺乏特异性的HDAC抑制剂, 因此, 需要更多的实验室和临床的探索使其成为眼科疾病潜在的临床治疗药物。

利益冲突申明 本研究无任何利益冲突

作者贡献声明 林永:收集数据, 参与选题、设计及资料的分析和解释; 撰写论文; 对编辑部的修改意见进行修改。李丽:参与选题、设计和修改论文。瞿佳:参与选题、设计, 根据编辑部的修改意见进行核修

The authors have declared that no competing interests exist.

参考文献
[1] Holliday R. Epigenetics: A historical overview. Epigenetics, 2006, 1(2): 76-80. [本文引用:1]
[2] Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics, 2012, 7(2): 119-130. DOI:10.4161/epi.7.2.18764. [本文引用:1]
[3] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693-705. DOI:10.1016/j.cell.2007.02.005. [本文引用:1]
[4] Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2. 8 A resolution. Nature, 1997, 389(6648): 251-260. DOI:10.1038/38444. [本文引用:1]
[5] Verdin E, Ott M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol, 2015, 16(4): 258-264. DOI:10.1038/nrm3931. [本文引用:1]
[6] Eslaminejad MB, Fani N, Shahhoseini M. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J, 2013, 15(1): 1-10. [本文引用:1]
[7] Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J, 2003, 22(5): 1168-1179. DOI:10.1093/emboj/cdg115. [本文引用:1]
[8] Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem, 2005, 280(29): 26729-26734. DOI:10.1074/jbc.C500186200. [本文引用:1]
[9] Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol, 2011, 2011: 371832. DOI:10.1155/2011/371832. [本文引用:1]
[10] Khan O, La Thangue NB. HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol Cell Biol, 2012, 90(1): 85-94. DOI:10.1038/icb.2011.100. [本文引用:1]
[11] Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res, 2007, 5(10): 981-989. DOI:10.1158/1541-7786.MCR-07-0324. [本文引用:1]
[12] Giannini G, Cabri W, Fattorusso C, et al. Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Med Chem, 2012, 4(11): 1439-1460. DOI:10.4155/Fmc.12.80. [本文引用:1]
[13] Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol, 2012, 6(6): 579-589. DOI:10.1016/j.molonc.2012.07.003. [本文引用:1]
[14] Yang XJ, Grégoire S. Class Ⅱ histone deacetylases: From sequence to function, regulation, and clinical implication. Mol Cell Biol, 2005, 25(8): 2873-2884. DOI:10.1128/MCB.25.8.2873-2884.2005. [本文引用:1]
[15] Slingerland M, Guchelaar HJ, Gelderblom H. Histone deacetylase inhibitors: An overview of the clinical studies in solid tumors. Anticancer Drugs, 2014, 25(2): 140-149. DOI:10.1097/CAD.0000000000000040. [本文引用:2]
[16] Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res, 2009, 15(12): 3958-3969. DOI:10.1158/1078-0432.CCR-08-2785. [本文引用:1]
[17] Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res, 2015, 49: 17-45. DOI:10.1016/j.preteyeres.2015.07.002. [本文引用:1]
[18] Tand on A, Tovey JC, Sharma A, et al. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med, 2010, 10(6): 565-578. [本文引用:1]
[19] Zhou Q, Wang Y, Yang L, et al. Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells. Mol Vis, 2008, 14: 2556-2565. [本文引用:1]
[20] Wang J, Lin A, Lu L. Effect of EGF-induced HDAC6 activation on corneal epithelial wound healing. Invest Ophthalmol Vis Sci, 2010, 51(6): 2943-2948. DOI:10.1167/iovs.09-4639. [本文引用:1]
[21] Sharma A, Mehan MM, Sinha S, et al. Trichostatin a inhibits corneal haze in vitro and in vivo. Invest Ophthalmol Vis Sci, 2009, 50(6): 2695-2701. DOI:10.1167/iovs.08-2919. [本文引用:2]
[22] Sharma A, Sinha NR, Siddiqui S, et al. Role of 5' TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated corneal fibrosis inhibition. Molecular Vis, 2015, 21: 974-984. [本文引用:2]
[23] Donnelly KS, Giuliano EA, Sharma A, et al. Suberoylanilide hydroxamic acid (vorinostat): Its role on equine corneal fibrosis and matrix metalloproteinase activity. Vet Ophthalmol, 2014, 17: 61-68. DOI:10.1111/vop.12129. [本文引用:1]
[24] Tand on A, Tovey JC, Waggoner MR, et al. Vorinostat: A potent agent to prevent and treat laser-induced corneal haze. J Refract Surg, 2012, 28(4): 285-290. DOI:10.3928/1081597X-20120210-01. [本文引用:1]
[25] Lim RR, Tan A, Liu YC, et al. ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis. Sci Rep, 2016, 6: 20841. DOI:10.1038/srep20841. [本文引用:1]
[26] 杜文文, 张凤妍. 后发性白内障与相关信号通路的研究进展. 国际眼科纵览, 2016, 40(3): 170-178. DOI:10.3706/cma.j.issn.1673-5803.2016.03.006. [本文引用:1]
[27] Meacock WR, Spalton DJ, Stanford MR. Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol, 2000, 84(3): 332-336. [本文引用:2]
[28] Yang Y, Ye Y, Lin X, et al. Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04. PLoS One, 2013, 8(2): e56837. DOI:10.1371/journal.pone.0056837. [本文引用:1]
[29] Rong X, Qiu X, Jiang Y, et al. Effects of histone acetylation on superoxide dismutase 1 gene expression in the pathogenesis of senile cataract. Sci Rep, 2016, 6: 34704. DOI:10.1038/srep34704. [本文引用:1]
[30] Chen X, Xiao W, Chen W, et al. The epigenetic modifier trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition of lens epithelial cells. Cell Death Dis, 2013, 4: e884. DOI:10.1038/cddis.2013.416. [本文引用:1]
[31] Xie L, Santhoshkumar P, Reneker LW, et al. Histone deacetylase inhibitors trichostatin A and vorinostat inhibit TGFβ2-induced lens epithelial-to-mesenchymal cell transition. Invest Ophthalmol Vis Sci, 2014, 55(8): 4731-4740. DOI:10.1167/iovs.14-14109. [本文引用:1]
[32] Tovar-Vidales T, Clark AF, Wordinger RJ. Transforming growth factor-beta2 utilizes the canonical Smad-signaling pathway to regulate tissue transglutaminase expression in human trabecular meshwork cells. Exp Eye Res, 2011, 93(4): 442-451. DOI:10.1016/j.exer.2011.06.011. [本文引用:1]
[33] Wordinger RJ, Fleenor DL, Hellberg PE, et al. Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: Implications for glaucoma. Invest Ophthalmol Vis Sci, 2007, 48(3): 1191-1200. DOI:10.1167/iovs.06-0296. [本文引用:1]
[34] Bermudez JY, Webber HC, Patel GC, et al. HDAC inhibitor-mediated epigenetic regulation of glaucoma-associated TGFβ2 in the trabecular meshwork. Invest Ophthalmol Vis Sci, 2016, 57(8): 3698-3707. DOI:10.1167/iovs16-19446. [本文引用:1]
[35] Schwechter BR, Millet LE, Levin LA. Histone deacetylase inhibition-mediated differentiation of RGC-5 cells and interaction with survival. Invest Ophthalmol Vis Sci, 2007, 48(6): 2845-2857. DOI:10.1167/iovs.06-1364. [本文引用:1]
[36] Kimura A, Guo X, Noro T, et al. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma. Neurosci Lett, 2015, 588: 108-113. DOI:10.1016/j.neulet.2014.12.054. [本文引用:1]
[37] Biermann J, Grieshaber P, Goebel U, et al. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci, 2010, 51(1): 526-534. DOI:10.1167/iovs.09-3903. [本文引用:1]
[38] Biermann J, Boyle J, Pielen A, et al. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol Vis, 2011, 17: 395-403. [本文引用:1]
[39] Pelzel HR, Schlamp CL, Nickells RW. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci, 2010, 11: 62. DOI:10.1186/1471-2202-11-62. [本文引用:1]
[40] Schmitt HM, Pelzel HR, Schlamp CL, et al. Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury. Mol Neurodegener, 2014, 9: 39. DOI:10.1186/1750-1326-9-39. [本文引用:1]
[41] Lebrun-Julien F, Suter U. Combined HDAC1 and HDAC2 depletion promotes retinal ganglion cell survival after injury through reduction of p53 target gene expression. ASN Neuro, 2015, 7(3). DOI:10.1177/1759091415593066. [本文引用:1]
[42] Bradley JE, Ramirez G, Hagood JS. Roles and regulation of Thy-1, a context-dependent modulator of cell phenotype. Biofactors, 2009, 35(3): 258-265. DOI:10.1002/biof.41. [本文引用:1]
[43] Chindasub P, Lindsey JD, Duong-Polk K, et al. Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells. Invest Ophthalmol Vis Sci, 2013, 54(1): 96-102. DOI:10.1167/iovs.12-10850. [本文引用:1]
[44] Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3): 556-564. DOI:10.2337/dc11-1909. [本文引用:1]
[45] Yokoi M, Yamagishi SI, Takeuchi M, et al. Elevations of AGE and vascular endothelial growth factor with decreased total antioxidant status in the vitreous fluid of diabetic patients with retinopathy. Br J Ophthalmol, 2005, 89(6): 673-675. DOI:10.1136/bjo.2004.055053. [本文引用:1]
[46] Dahrouj M, Alsarraf O, McMillin JC, et al. Vascular endothelial growth factor modulates the function of the retinal pigment epithelium in vivo. Invest Ophthalmol Vis Sci, 2014, 55(4): 2269-2275. DOI:10.1167/iovs.13-13334. [本文引用:1]
[47] Desjardins D, Liu Y, Crosson CE, et al. Histone deacetylase inhibition restores retinal pigment epithelium function in hyperglycemia. PLoS One, 2016, 11(9): e0162596. DOI:10.1371/journal.pone.0162596. [本文引用:1]
[48] Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem, 2010, 110(6): 1306-1313. DOI:10.1002/jcb.22644. [本文引用:1]
[49] Kadiyala CS, Zheng L, Du Y, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: Effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem, 2012, 287(31): 25869-25880. DOI:10.1074/jbc.M112.375204. [本文引用:1]
[50] Xie M, Tian J, Luo Y, et al. Effects of 5-aza-2'-deoxycytidine and trichostatin A on high glucose- and interleukin-1β-induced secretory mediators from human retinal endothelial cells and retinal pigment epithelial cells. Mol Vis, 2014, 20: 1411-1421. [本文引用:1]
[51] Kim JH, Kim JH, Oh M, et al. N-hydroxy-7-(2-naphthylthio) heptanomide inhibits retinal and choroidal angiogenesis. Mol Pharm, 2009, 6(2): 513-519. DOI:10.1021/mp800178b. [本文引用:1]
[52] Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol, 2008, 38(3): 253-269. DOI:10.1007/s12035-008-8045-9. [本文引用:1]
[53] Dryja TP, Rucinski DE, Chen SH, et al. Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci, 1999, 40(8): 1859-1865. [本文引用:1]
[54] Paquet-Durand F, Silva J, Talukdar T, et al. Excessive activation of poly (ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci, 2007, 27(38): 10311-10319. DOI:10.1523/JNEUROSCI.1514-07.2007. [本文引用:1]
[55] De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol, 2012, 84(2): 137-146. DOI:10.1016/j.bcp.2012.03.018. [本文引用:1]
[56] Sancho-Pelluz J, Alavi MV, Sahaboglu A, et al. Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death Dis, 2010, 1: e24. DOI:10.1038/cddis.2010.4. [本文引用:1]
[57] Guo X, Wang SB, Xu H, et al. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun, 2015, 6: 8005. DOI:10.1038/ncomms9005. [本文引用:1]
[58] Chen B, Cepko CL. HDAC4 regulates neuronal survival in normal and diseased retinas. Science, 2009, 323(5911): 256-259. DOI:10.1126/science.1166226. [本文引用:1]
[59] Mitton KP, Guzman AE, Deshpand e M, et al. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis, 2014, 20: 1527-1544. [本文引用:1]
[60] Clemson CM, Tzekov R, Krebs M, et al. Therapeutic potential of valproic acid for retinitis pigmentosa. Br J Ophthalmol, 2011, 95(1): 89-93. DOI:10.1136/bjo.2009.175356. [本文引用:1]
[61] Iraha S, Hirami Y, Ota S, et al. Efficacy of valproic acid for retinitis pigmentosa patients: A pilot study. Clin Ophthalmol, 2016, 10: 1375-1384. DOI:10.2147/OPTH.S109995. [本文引用:1]
[62] Shanmugam PM, Minija CK, Ramanjulu R, et al. Effect of short-term oral valproic Acid on vision and visual field in retinitis pigmentosa. Ophthalmol Ther, 2012, 1(1): 6. DOI:10.1007/s40123-012-0006-8. [本文引用:1]
[63] Feng W, Zhang B, Cai D, et al. Therapeutic potential of histone deacetylase inhibitors in pancreatic cancer. Cancer Lett, 2014, 347(2): 183-190. DOI:10.1016/j.canlet.2014.02.012. [本文引用:1]
[64] Khabele D. The therapeutic potential of class Ⅰ selective histone deacetylase inhibitors in ovarian cancer. Front Oncol, 2014, 4: 111. DOI:10.3389/fonc.2014.00111. [本文引用:1]
[65] Mariadason JM. HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008, 3(1): 28-37. [本文引用:1]
[66] Chuang MJ, Wu ST, Tang SH, et al. The HDAC inhibitor LBH589 induces ERK-dependent prometaphase arrest in prostate cancer via HDAC6 inactivation and down-regulation. PLoS One, 2013, 8(9): e73401. DOI:10.1371/journal.pone.0073401. [本文引用:1]
[67] Russo D, Durante C, Bulotta S, et al. Targeting histone deacetylase in thyroid cancer. Expert Opin Ther Targets, 2013, 17(2): 179-193. DOI:10.1517/14728222.2013.740013. [本文引用:1]
[68] Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 2010, 330(6009): 1410-1413. DOI:10.1126/science.1194472. [本文引用:1]
[69] Land reville S, Agapova OA, Matatall KA, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res, 2012, 18(2): 408-416. DOI:10.1158/1078-0432.CCR-11-0946. [本文引用:2]
[70] Klisovic DD, Katz SE, Effron D, et al. Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Invest Ophthalmol Vis Sci, 2003, 44(6): 2390-2398. [本文引用:1]
[71] Munoz-Erazo L, Madigan M, Conway RM. Gene expression in conjunctival melanoma cell lines treated with the histone deacetylase (HDAC) inhibitor valproic acid (VPA). Acta Ophthalmologica, 2014, 92. DOI:10.1111/j.1755-3768.2014.4446.x. [本文引用:1]
[72] Venza I, Visalli M, Oteri R, et al. Class I-specific histone deacetylase inhibitor MS-275 overrides TRAIL-resistance in melanoma cells by downregulating c-FLIP. Int Immunopharmacol, 2014, 21(2): 439-446. DOI:10.1016/j.intimp.2014.05.024. [本文引用:1]
[73] Harbour JW, Chao DL. A molecular revolution in uveal melanoma: Implications for patient care and targeted therapy. Ophthalmology, 2014, 121(6): 1281-1288. DOI:10.1016/j.ophtha.2013.12.014. [本文引用:1]
[74] 邹宏密, 简嘉, 周希媛. 视网膜母细胞瘤的治疗研究进展. 国际眼科杂志, 2018, 18(8): 1407-1410. DOI:10.3980/j.issn.1672-5123.2018.8.11. [本文引用:1]
[75] Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell, 1998, 92(4): 463-473. [本文引用:1]
[76] Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 391(6667): 597-601. DOI:10.1038/35404. [本文引用:1]
[77] Dalgard CL, Van Quill KR, O'Brien JM. Evaluation of the in vitro and in vivo antitumor activity of histone deacetylase inhibitors for the therapy of retinoblastoma. Clin Cancer Res, 2008, 14(10): 3113-3123. DOI:10.1158/1078-0432.CCR-07-4836. [本文引用:1]
[78] Poulaki V, Mitsiades CS, Kotoula V, et al. Molecular sequelae of histone deacetylase inhibition in human retinoblastoma cell lines: Clinical implications. Invest Ophthalmol Vis Sci, 2009, 50(9): 4072-4079. DOI:10.1167/iovs.09-3517. [本文引用:1]